Выбрать главу

И, главное, он почувствовал, что в этих приемах заключена та сила обобщения, которая и ведет обычно к подлинному научному исследованию, помогает вскрывать основы явлений, их закономерности. Закономерности! За ними он сейчас охотился повсюду.

А суть того, о чем говорилось, все-таки от Мартьянова ускользала. Уж больно туманный, непонятный язык. Ему оставалось только сидеть безучастным зрителем. Это он-то, который не может ни вставить по любому поводу своего мнения или ни сказать свое излюбленное: «Нет, это не так!» Что же ему тогда здесь время проводить? И он уж не раз поглядывал на дверь.

— У нас сегодня еще одна тема, — произнес тихий голос председателя. — Василий Игнатьевич Шестопалов сообщит некоторые выводы своей диссертации. Алгебра двухполюсных схем. Прошу…

Высокий человек в очках, с прямыми, падающими на лоб волосами, которого Мартьянов видел еще в коридоре перед началом семинара, вырос из переднего ряда, в два длинных шага махнул на возвышение, неловко споткнулся и, стирая тряпкой с доски, еще спиной к аудитории быстро заговорил резким тоном, будто сразу вступая с кем-то в полемику.

Мартьянов насторожился. Двухполюсные схемы — это уже что-то по его части. Есть такие электрические схемы, что называют двухполюсниками. Но при чем тут алгебра? Ну-ну, что ты там надумал…

Высокий между тем продолжал так же быстро говорить, стуча мелом по доске, почти не оборачиваясь к аудитории. Следить за его объяснениями было трудно. Опять те же туманности. Логическая равносильность, гармоническое сложение, инверсия… Мартьянов и не пытался следить за всеми подробностями, так сказать за пируэтами доказательств. Все равно не разобраться. Но дело касалось электрических схем. И тут Мартьянов многое схватывал на лету. (Ага, вот к чему ты клонишь!) Важно было не упустить основное. Куда это все ведет?

А вел докладчик к тому, что заставляло Мартьянова прислушиваться все внимательнее.

Смотрите-ка, символическая запись цепей! Электрические узлы в виде букв: иксы и игреки, как в алгебре. И, главное, обозначение соединений между ними в виде алгебраических действий. Докладчик пишет плюс и говорит, что это параллельное соединение. Пишет знак умножения, точку и говорит: соединение последовательное. И еще пишет скобки, чтобы обозначить порядок: что за чем должно следовать. Тоже как в алгебре.

Мелок стучал по доске. Икс-один, умноженный на икс-два, плюс игрек, умноженный на икс-три, берем в скобки и множим на скобку другую… Пожалуйте, электрическая цепь, записанная в виде формулы.

Да, формулы, какие привыкли мы видеть в алгебраических задачках.

Мартьянов глядел на доску, словно прицеливаясь. «Ну-ну…» — подталкивал он мысленно докладчика, не зная еще сам, соглашаться ли с ним или отвергать.

А тот со всей математической пунктуальностью, ступенька за ступенькой, подбирался к выводу.

— Итак, мы можем утверждать…

И он утверждал, шагая туда-сюда перед доской и как бы диктуя, утверждал, что каждая такая формула выражает вполне определенную электрическую схему. И наоборот: всякая схема может быть записана посредством соответствующей формулы.

— Вполне однозначно! — подчеркивал он, замирая вдруг на месте для убедительности.

Ох, уж и любят эти математики свое «однозначно»!

Мартьянов переводил по-своему. Что это все значит практически? Это значит, если верить докладчику, что по чертежу любой схемы можно написать ее алгебраическое выражение. И еще важнее, пожалуй, что по данному выражению можно начертить соответствующую схему. Переводить на алгебру и обратно. Ишь ты!..

Но… У него уже выработалась привычка: если что-нибудь сразу заманивает — сопротивляйся. Сопротивляйся и проверяй. Он столько раз уже загорался надеждой, открывая какие-нибудь обещающие страницы. И… увы! Так что всякое «но» служило ему теперь как бы защитой.

Но докладчик не дал ему времени на отыскивание этих «но». Докладчик выстраивал дальнейшие соображения. Если принять способ алгебраической записи, то… Тут Мартьянов и услышал именно то, что его больше всего поразило. Двухполюсные схемы обладают алгебраическими свойствами. И должны подчиняться законам. Законам алгебры.

На доске вновь замелькали строчки примеров. Закон коммутативности. Закон ассоциативности… Ведь все равно, сложить ли икс с игреком или игрек с иксом. Или какая разница, прибавить ли к ним зет, или сначала сложить этот зет с иксом, а потом прибавить к ним игрек. Ну, в общем, хорошо знакомое из алгебры: от перемены мест слагаемых сумма не меняется, а от порядка умножения нескольких величин результат не зависит. Каждый школьник знает. Первейшие законы, из которых потом все выводится.