Еще в ранней молодости воображение его было потрясено методом Луллия. Он написал даже хвалебный трактат, воспевая силу комбинаторного искусства, — «школьный очерк», как пришлось ему потом самому признаваться в незрелости этой работы. С годами Лейбниц увидел ошибки испанского богослова, критиковал их, но основной дух Луллиева искусства, стремление перевести процесс рассуждений на язык символов всегда были созвучны устремлениям Лейбница.
Ему, мечтавшему о единстве наук, о всеобщем универсальном научном языке, видится цель: создать особое исчисление, которому должна подчиняться логика. Идеал общего метода, который позволил бы систематизировать вечные истины, доказывать их и даже открывать новые. Надо только разложить все логические понятия на простейшие, ну, как в математике числа разлагаются на простые сомножители. «Алфавит человеческих мыслей», — назвал он. А потом составлять из такого алфавита всевозможные комбинации. Тут-то и ожидают пытливых высшие награды в виде неопровержимых доказательств и чистых истин.
Конечно, символика сыграет тут первую скрипку. Удобная, подходящая символика. Буквы, образующие «алфавит», хотя, может быть, они и не будут обычными буквами. И непременно еще знаки, выражающие соотношения. И непременно еще правила, указывающие, как эти символы применять и комбинировать между собой. Уж ему-то, Лейбницу, открывшему дифференциальное и интегральное исчисления, прекрасно было известно, какую мощную силу приобретает удачно выбранная символика. Теперь он и пытался бросить ее на поле логических сражений. О, тогда осуществится его мечта! Тогда философам не придется больше растрачивать себя в бесплодных спорах. Они возьмут в руки карандаши, сядут за грифельные доски и скажут друг другу: давайте вычислять! Тогда многим станет доступен процесс размышления и новые горизонты откроются перед умственным взором человечества.
Разве не стоит ради такой цели поискать секрет логического исчисления, или «всеобщей характеристики», как назвал он свой воображаемый метод?
В один из зимних вечеров 1679 года, когда весь Ганновер лежал в снегу, как на пейзажах Брейгеля, совершает Лейбниц первую попытку исчисления логики.
Строчки и столбики цифр. Каждое понятие обозначается цифрой. Сложное понятие — составным числом. Имеем суждение: «Человек — разумное животное». Пусть двойка обозначает «разумное», а тройка — «животное». Следовательно, понятие «человек» будет произведением два на три. И Лейбниц, довольный собственной арифметикой, пишет: равно шести. Логическое суждение, переведенное на цифровой язык.
Но это только начало. Он развивает метод числовых характеристик. Вводит знак минус для отрицательных понятий. Устанавливает правила деления одной характеристики на другую, чтобы отличать суждения утвердительные от отрицательных. Отыскивает в колонках цифр, проводя диагонали, пары взаимно простых чисел, что должно указывать ему на истинность суждений.
Всё новые примеры, которые он выводит на бумаге, должны подтвердить, что его правила не расходятся с основными правилами логики — обращения, подчинения, противопоставления. «Все набожные суть богатые». «Некоторые набожные не суть богатые».
«Некоторые богатые несчастны»… — жонглирует он на числовом языке.
Немало еще вечеров посвятит он созданию своей «всеобщей характеристики». В окна его будет смотреть и зима, и весенний свет, и душное лето. А он все еще не приходит к цели. И чем дальше, тем тяжелее его взгляд, оценивающий исписанные, исчерченные листы.
Лейбниц хотел заменить рассуждение вычислением, а убеждался в том, что ему приходится очень и очень даже рассуждать, чтобы выбрать правильно для характеристики тот или иной набор чисел. Чтобы и все сходилось, и чтобы делилось, и чтобы соответствовало по диагоналям. Невольно приходилось заранее как бы подстраивать все к ответу. Опять логика, да еще с какой изворотливостью! Возврат к тому, от чего он пытался избавиться.
Да, надо было сознаться, что его арифметика логики не выдержала испытания.
С упорством трудолюба продолжал он биться над своей задачей. Надо изменить символику. Что-то более гибкое, чем колонки цифр. И Лейбниц решает применить буквенное исчисление, наподобие алгебры. Снова длинные вечера. Снова немой разговор на языке символов. Медленное, трудное продвижение к цели — к цели, которую никто, кроме него, и не видит.