Выбрать главу

Поэтому при всей справедливости истины, которая была высказана уже Кантом, а на материалистической основе переосмыслена Марксом, что наука вообще достигает совершенства лишь там и в той мере, в какой ей удается взять на вооружение математику, это вовсе не означает, что чисто математическое описание явлений есть предел, цель и идеал совершенства теоретического знания. Не выявив количественной определенности явлений, наука остается при неполном и одностороннем их понимании. Но верно и обратное: если явления проанализированы только в плане количества, их понимание не менее ущербно и абстрактно. Односторонне количественное описание явлений природы исчерпывало бы задачу науки лишь в одном случае, если бы материя действительно представляла собой абсолютно тождественную, неразличенную внутри себя массу, а все различия и изменения внутри этой массы сводились бы к чисто пространственным перемещениям, протекающим во времени. В этом случае всё научное знание действительно свелось бы к ряду математических уравнений, пропорций неименованных величин, чистых чисел, и пифагорейская философия могла бы претендовать на титул единственно научной философии. Конечно, всё это никак не снимает важности нахождения механических эквивалентов всех многообразных форм движения; с этой задачей и связана неустранимая потребность и тенденция разрешить все многообразные физические величины (массы, энергии и т. д.) в чистые пространственно-временные величины, которые можно затем рассматривать как неименованные величины, как чистые числа в составе уравнений, абстрактно-математических пропорций. Это, однако, не значит, что они объективно к ней «сводятся» без остатка. «Остаток» получается весьма солидный, ибо этот «остаток» — качество, качественно-количественная определенность с ее специфическими мерами. Несводимость качественных различий к количественным Энгельс демонстрирует и на примерах из самой математики; «говоря о бесконечно большом и бесконечно малом, математика вводит такое качественное различие, которое имеет даже характер непреодолимой качественной противоположности: мы имеем здесь количества, столь колоссально отличные друг от друга, что между ними прекращается всякое рациональное отношение, всякое сравнение, и что они становятся количественно несоизмеримыми. Обычная несоизмеримость, например несоизмеримость круга и прямой линии, тоже представляет собою диалектическое качественное различие; но здесь именно количественная разность однородных величин заостряет качественное различие до несоизмеримости»[44]. Именно поэтому теоретики, в которых буржуазное общество воспитало подозрительное недоверие к диалектике, к логике противоречия, всегда испытывают враждебное чувство к понятию бесконечности, в виде которой в математическом выражении всегда выступает неразрешенное качественное различие между объектами, измеряемыми одной и той же мерой. Анализируя взгляды Е. Дюринга, Энгельс показывает, что стремление уйти раз и навсегда от диалектических противоречий в понятии бесконечности, в математических описаниях времени, пространства и движения, всегда рано или поздно приводит к противоречиям нелепым, формальным, которые отнюдь не исчезают от того, что их маскируют искусственными способами выражения, разрешают чисто словесно.