Выбрать главу

В результате удалось показать, что комета есть оторвавшийся от поверхности солнечной хромосферы протуберанец, возникший при спорадическом неглубоком выбросе солнечной плазмы с теми структурами синтезированного вещества, которые оказались в ней в этот момент. Причём движение кометы обеспечивается энергией хромосферной вспышки – результатом протекания ядерных реакций под поверхностным слоем звезды.

А особенности кинематики движения периодических комет обусловливаются характером отрыва протуберанцев от хромосферы, поднимающихся в основном из её приполярных, более медленно вращающихся областей, обеспечивающих им наиболее устойчивую поддержку и выталкивающих по направлению к полюсу.

В итоге оказывается, что кометы, обычно выделяемые в особый вид небесных тел Солнечной системы неизвестного происхождения, фактически являются ни чем иным, как побочным продуктом синтезирующей деятельности Солнца, то есть одним из рядовых продуктов эволюции звезды.

Итак, важнейшим фактором первостепенного значения для изучения происхождения кометы должен быть источник энергетического обеспечения её движения, обусловливающий соответствующую скорость и колоссальную кинетическую энергию движения в поле притяжения Солнца, позволяющую облететь Солнце и не упасть на него.

В свете этого условия гипотетическое облако ледяных глыб Оорта на периферии Солнечной системы, удалённостью 50 000-150 000 астрономических единиц (рассматриваемое Коротцевым в «Астрономии для всех»), не обладает источником энергии, обеспечивающим движение кометных тел к Солнцу. Это утверждение об облаке Оорта как поставщике наблюдаемых комет остаётся по существу на уровне естественно научных знаний ХУП и ХУШ веков, когда не было известно о ядерном синтезе.

Для приобретения кинетической энергии движения сгустку вещества нужна энергия взрывных процессов термоядерного синтеза звёздных недр, а не холодные просторы межзвёздного пространства с температурой, близкой к абсолютному нулю.

Как и было показано в Новой космогонической концепции, всё, что плавает вокруг звёзд – это выброшенное из звезды вещество, получившее энергию движения за счёт энергии ядерного синтеза. Это взрывные процессы разной мощности. Среди них есть закономерные и случайные:

1- Самые мощные – ЗАКОНОМЕРНЫЕ взрывы звезды и выбросы всей её наружной оболочки по ЗАВЕРШЕНИЮ периода или ряда таблицы элементов как окончанию очередной стадии синтеза со сменой режима атомообразования,

2- Менее мощные – это ЗАКОНОМЕРНЫЕ энергетические всплески по ОКОНЧАНИЮ синтеза определённого элемента,

3- Наименее мощные энергетические всплески связаны с присоединением к формирующемуся атому следующего диполя (нуклона) и не знаменуют собой формирования окончательной законченной структуры.

Эти наименее мощные и наименее закономерные звёздные всплески могут иметь не последнюю роль в ходе процессов синтеза и давать местные случайные и не совсем случайные спорадические выбросы плазмы эруптивного характера. Например,было известно по данным из обсерватории Ла-Пальма (Канарские острова), что горячая точка на звезде Бетельгейзе в какой-то момент представляла собой вершину гигантской колонны вздымающегося раскалённого газа. То есть – протуберанец.

В этом сообщении журнала «Земля и Вселенная» № 3 за 1991 год отмечается, что у многих звёзд, включая Солнце, конвективные потоки выносят энергию вверх. У Солнца подобные конвективные ячейки невелики, но возможно достаточны для выплеска плазмы наружу и отрыва протуберанцев в тех количествах, которые, как мы полагаем, затем по мере застывания преобразуются в кометные тела размером 1 – 50 км.

Что известно о вспышечной активности Солнца?

Обратимся к " Астрофизике Солнечной системы" Дж. Брандта и П. Ходжа //М, Мир. 1967 г.//, в которой проведён анализ вспышечной активности Солнца, как следствия турбулентного движения, связанного с ядерной энергией, генерируемой в недрах Солнца.

Как пишут эти авторы, детально разработанной теории хромосферных вспышек пока не существует, так как не было достоверно известно о глубине залегания в Солнце зоны синтеза. Но в 2007 году наблюдения Крымской астрофизической обсерватории показали, что источник энергии, разогревающий солнечную корону, находится на глубине 16 000 км от поверхности Солнца. Как и предполагалось этими авторами, в случае, если ядерные реакции протекают под поверхностным слоем звезды, то хромосферные вспышки на Солнце именно ими и обусловлены. Действующая активная звезда претерпевает вспышки, а в окружающем её пространстве циркулируют вторичные небесные тела из вещества, первично принадлежащего звёздному синтезу – иначе ему неоткуда взяться.

Далее следует единственно логичный вывод: кометы и есть результат спорадического выброса солнечной плазмы и тех атомов синтезированного вещества, которые могли оказаться в солнечной атмосфере в этот момент.

Однако 16 000 км –это намного меньше 1/10 радиуса Солнца, то есть 70 000 км, а значит область спорадического выброса плазмы находится выше зоны Звёздной трансформации Солнца, где идёт ведущая передовая линия основного синтеза. Выброс из Зоны звёздной трансформации (ЗЗТ) осуществляется только при смене режима атомообразования и является закономерным процессом, ограниченным временными рамками завершения периода или ряда элементов основной ведущей линии синтеза. Второстепенные реакции синтеза, идущие в остальном объёме над ЗЗТ, протекающие в области меньших давлений, вполне могут воспроизводить синтез 1-го и 2-го периодов элементов, не требующих механических и магнитных давлений основной линии синтеза.

Однако, если до закономерной вспышки по окончании ряда элементов или завершению синтеза определённого элемента ещё далеко, то простое присоединение очередного диполя (нуклона) даст энергетический всплеск по осуществлении этого промежуточного этапа звёздного синтеза. Он ознаменует собой момент появления продукта незавершённого синтеза, по просту говоря, изотопа и может оказаться в последующий момент выброшенным с выплеском плазмы. Среди незавершённых структур гелия 24Не как его лёгких "изотопов" могут быть дейтерий 12 Н с массовым числом 2 и гелий 23Не с массовым числом 3. При этом ничто не мешает образоваться аналогичной структуре трития 13 Н с массовым числом 3, то есть с таким же количеством диполей (нуклонов), что и в гелии-3.