Выбрать главу

2.3.1. Радиосвязь

Радиоволны легко генерировать, они способны преодолевать большие расстояния и с легкостью проходить сквозь стены. Поэтому их повсеместно используют для связи как в помещениях, так и на открытом пространстве. Радиоволны являются всенаправленными, то есть расходятся во все стороны от источника, а значит, нет необходимости тщательно нацеливать передатчик на приемник.

Иногда всенаправленность радиоволн полезна, но порой она может сыграть злую шутку. В 1970-х компания General Motors решила оборудовать все свои новые кадиллаки электронной антиблокировочной системой. При нажатии на педаль тормоза устройство подавало сигналы включения/выключения тормозов вместо их блокировки. Однажды дорожный патрульный штата Огайо попытался связаться с управлением по своей новенькой рации, и внезапно проезжающий мимо кадиллак стал вести себя как необъезженный жеребец. Когда офицер наконец остановил эту машину, водитель заявил, что ничего не делал и что автомобиль вдруг будто взбесился.

В конце концов начала прослеживаться закономерность: иногда кадиллаки «бунтовали», но только на крупных шоссе Огайо и только когда за ними наблюдал дорожный патруль. Долгое время в General Motors не могли понять, почему эта проблема не возникает во всех остальных штатах, а также на небольших дорогах Огайо. Только после тщательных исследований они обнаружили, что электропроводка кадиллака служит прекрасной антенной для частот, используемых новой радиосистемой дорожного патруля штата Огайо.

Свойства радиоволн зависят от частоты. Низкочастотные радиоволны легко проходят сквозь препятствия, но их мощность резко падает с удалением от источника — со скоростью минимум 1/r2 в воздухе, — поскольку энергия сигнала распределяется более тонким слоем по большей поверхности. Подобное затухание называется потерями в тракте передачи (path loss). Высокочастотные радиоволны движутся по прямой и отражаются от препятствий. Эти отражения сильно влияют на мощность сигнала помимо уже упомянутых потерь в тракте передачи. Высокочастотные радиоволны сильнее поглощаются дождем и остальными препятствиями, чем низкочастотные. При этом радиоволны любой частоты подвержены помехам от моторов и прочего электрического оборудования.

Интересно сравнить затухание радиоволн и сигналов в направляющих средах передачи. В оптоволокне, коаксиальном кабеле и витой паре мощность сигнала падает на одинаковую долю за единицу расстояния, например, на 20 дБ за 100 м для витой пары. В случае радиоволн мощность сигнала падает на одинаковую долю при удвоении расстояния, например, в вакууме эта доля равна 6 дБ. Это означает, что радиоволны могут проходить большие расстояния, при этом основной проблемой являются взаимные помехи между пользователями. Поэтому правительства всех стран жестко регулируют использование радиопередатчиков (за несколькими исключениями, которые мы обсудим далее).

В диапазонах ОНЧ, НЧ и СЧ радиоволны следуют вдоль земной поверхности, как показано на илл. 2.10 (а). Прием этих волн возможен на расстоянии до 1000 км для низких частот и на меньшем — для чуть более высоких. Для AM-радиовещания используется диапазон СЧ, именно поэтому поверхностный сигнал бостонских AM-радиостанций не так-то просто услышать в Нью-Йорке. Радиоволны в этих диапазонах легко проникают сквозь здания, поэтому радио прекрасно работает в помещении. Основная проблема с использованием этих диапазонов частот для передачи данных — низкая полоса пропускания.

Илл. 2.10. (а) Радиоволны ОНЧ, НЧ и СЧ следуют вдоль земной поверхности. (б) Радиоволны ВЧ отражаются от ионосферы

В диапазонах ВЧ и ОВЧ поверхностный сигнал поглощается почвой. Впрочем, те волны, что достигают ионосферы — слоя заряженных частиц, окружающих нашу планету на высоте от 100 до 500 км, — отражаются от нее и попадают обратно на землю, как показано на илл. 2.10 (б). При определенных атмосферных условиях сигнал даже может отразиться туда и обратно несколько раз. Радиолюбители применяют диапазоны ВЧ и ОВЧ для переговоров на больших расстояниях. Эти диапазоны также используются военными.

2.3.2. Микроволновая связь

На частоте выше 100 МГц волны движутся практически по прямой, а значит, их можно сфокусировать в узкий пучок с помощью параболической антенны наподобие всем привычной спутниковой тарелки. Концентрация энергии сигнала в виде узкого луча позволяет добиться гораздо лучшего соотношения сигнал/шум. Но для этого нужно тщательно выровнять передающую и принимающую антенны относительно друг друга. Этот подход позволяет выстроить в ряд несколько передатчиков и направить их на расположенные друг за другом приемники. Направленность позволяет осуществлять связь без взаимных помех, конечно, при соблюдении минимального расстояния между объектами. До появления оптоволоконных кабелей именно на таких микроволнах десятилетиями основывалась вся система междугородних телефонных разговоров. На самом деле вся система MCI (одного из первых конкурентов AT&T, основанного после распада последней) была построена на базе микроволновой связи между разнесенными на десятки километров вышками. Этот факт отражен в самом названии упомянутой компании: MCI расшифровывается как Microwave Communications, Inc. — Корпорация «Микроволновая связь». С тех пор MCI уже успела перей­ти на оптоволокно и, пройдя через ряд корпоративных слияний и банкротств, стала частью Verizon.