Выбрать главу

около 25 000 ГГц (см. илл. 2.5), то теоретически в нем возможны 2500 10-гигабитных каналов, даже при 1 бит/Гц (возможна и большая скорость передачи данных).

Технология WDM развивалась с такой быстротой, что компьютерные технологии могли ей только позавидовать. Этот метод был изобретен около 1990 года. Первые доступные на рынке системы включали восемь каналов, по 2,5 Гбит/с на канал; к 1998 году появились и быстро нашли применение системы с 40 каналами по 2,5 Гбит/с; к 2006 году уже были продукты с 192 каналами по 10 Гбит/с и 64 каналами по 40 Гбит/с, способные передавать до 2,56 Тбит/с; в 2019 году существуют системы, работающие с 160 каналами и поддерживающие пропускную способность более чем 16 Тбит/с для отдельной волоконной пары. Это в 800 раз больше, чем пропускная способность систем 1990 года. Кроме того, каналы очень плотно размещаются в оптоволокне, их разделяет 200, 100 или даже всего 50 ГГц.

Сужение расстояния между ними до 12,5 ГГц позволяет использовать 320 каналов в одном оптоволокне, тем самым дополнительно повышая пропускную способность. Подобные системы с большим числом каналов и маленьким расстоянием между ними называются плотными WDM (Dense WDM, DWDM). DWDM-системы обходятся дороже, поскольку из-за малых промежутков между каналами приходится поддерживать фиксированные длины волн и частоты. В результате подобные системы жестко контролируют параметры, чтобы гарантировать точность частот.

Одна из движущих сил технологии WDM — разработка полностью оптических компонентов. Ранее приходилось через каждые 100 км разделять каналы, по отдельности превращать оптические сигналы в электрические, чтобы усилить, а затем выполнять обратное преобразование и объединение. Сегодня полностью оптические усилители восстанавливают мощность сигнала всего лишь раз в 1000 км, не требуя многочисленных оптико-электрических преобразований.

В примере на илл. 2.23 длины волн системы фиксированы. Биты с входного оптоволокна 1 попадали в выходное оптоволокно 3, биты с входного оптоволокна 2 попадали в выходное оптоволокно 1, и т.д. Однако можно создать и WDM-системы с оптической коммутацией. В подобных устройствах выходные фильтры настраиваются с помощью интерферометров Фабри — Перо или Маха — Цендера. Эти устройства позволяют управляющему компьютеру динамически менять выбранные частоты, что делает систему гибкой. Благодаря этому она способна обеспечить множество путей по фиксированному набору оптоволоконных кабелей через телефонную систему на разных длинах волн. Больше информации об оптических сетях и WDM вы можете найти в работе Гроуба и Эйзелта (Grobe and Eiselt, 2013).

19 Или «передаваемыми в основной полосе частот». — Примеч. пер.

20 В русскоязычной литературе встречается также название «балансный сигнал», особенно применительно к аудиоаппаратуре. — Примеч. пер.

21 Известен также под названием кода Адамара. — Примеч. пер.

2.5. Коммутируемая телефонная сеть общего пользования

Для соединения двух расположенных рядом компьютеров проще всего использовать кабель. Именно так организованы локальные сети (Local Area Networks, LAN). Однако при значительных расстояниях, большом количестве подключаемых устройств или если кабель должен пересечь шоссе либо другой общественный участок затраты на прокладку собственных сетей совершенно неподъемны. Более того, в абсолютном большинстве стран мира закон запрещает прокладывать частные линии передачи по территории государственной собственности (или под ней). Следовательно, разработчикам сетей приходится использовать уже существующее оборудование связи, например телефонные или сотовые сети, а также сети кабельного телевидения.

Долгое время основным фактором, ограничивающим сети обмена данными, был последний участок («последняя миля») перед потребителем. В его основе может лежать любая вышеупомянутая физическая технология, в противовес архитектуре так называемой опорной сети («backbone») в остальной сети доступа. За последнее десятилетие ситуация изменилась коренным образом, и скорость домашнего интернета 1 Гбит/с перестала быть чем-то необычным. Значительный вклад в это изменение внесли оптоволоконные кабели, все чаще развертываемые на границах сети. Но, вероятно, в некоторых странах еще более важную роль сыграли современные инженерные методы, применяемые в уже существующих телефонных и кабельных сетях для получения максимально широкой полосы пропускания в существующей инфраструктуре. Оказалось, что это намного дешевле, чем прокладка новых (оптоволоконных) кабелей к домам пользователей. Мы изучим различные архитектуры и характеристики всех этих физических инфраструктур связи.