Выбрать главу

На другом конце провода, на стороне телефонной станции, устанавливается аналогичный разделитель. Сигнал с частотой выше 26 кГц направляется к специальному устройству — мультиплексору доступа к цифровой абонентской линии (Digital Subscriber Line Access Multiplexer, DSLAM), включающему такой же цифровой сигнальный процессор, как и ADSL-модем. DSLAM преобразует сигнал в биты и отправляет пакеты в сеть интернет-провайдера.

Благодаря полному разделению системы передачи голоса и ADSL, развертывание ADSL для телефонной компании упрощается. Достаточно закупить DSLAM и разделитель и подключить абонентов ADSL к разделителю. Прочие сервисы с высокой пропускной способностью, предоставляемые по телефонной сети (например, ISDN), требуют от компаний куда больших изменений в коммутационном оборудовании.

Следующая вершина, которую предстоит покорить DSL, — скорости передачи данных в 1 Гбит/с и более. Для этого применяется множество вспомогательных методов, включая связывание (bonding) — создание единого виртуального DSL-соединения за счет объединения двух или более физических DSL-соединений. Разумеется, при объединении двух витых пар пропускная способность также удваивается. В некоторых регионах в здания проводят телефонные кабели, состоящие из двойных витых пар. Изначально идея была в использовании двух отдельных телефонных линий с разными номерами в одном помещении. Но с помощью парной сцепки можно сделать на их основе одно высокоскоростное подключение к интернету. Все больше ISP в Европе, Австралии, Канаде и США развертывает технологию G.fast, в которой используется парное связывание. Как и в случае с остальными DSL, быстродействие G.fast зависит от расстояния, на которое передается сигнал. Недавние тесты показали, что на расстоянии 100 м скорость передачи по симметричному каналу приближается к 1 Гбит/с. В сочетании с оптоволокном это дает технологию FTTdp (Fiber to the Distribution Point — «оптоволокно до точки распределения»). Оптоволокно прокладывается до точки распределения между несколькими сотнями абонентов, а на оставшемся участке (в случае VDSL2 — до 1 км, хотя и с меньшей скоростью передачи) используются медные провода. FTTdp — лишь один из вариантов использования оптоволокна не только в ядре сети, но и ближе к ее периферии. Ниже представлены другие системы такого типа.

Оптоволокно до точки X (FTTX)

Скорость на последнем участке сети часто ограничена медными проводами, которые используются в обычных телефонных сетях. Они не способны на высокоскоростную передачу данных на столь большие расстояния, как оптоволоконный кабель. Следовательно, необходимо проложить оптоволокно как можно ближе к домам абонентов, то есть реализовать FTTH (Fiber to the Home — «оптоволокно до дома»). Телефонные компании стремятся повысить быстродействие абонентского шлейфа, для чего зачастую прокладывают оптоволокно максимально близко к домам. И если даже не прямо в дом, то хотя бы поблизости. При использовании технологии FTTN (Fiber to the Node/Neighborhood — «оптоволокно до узловой точки/микрорайона») кабель заканчивается в коммутационном шкафу на улице, иногда в нескольких километрах от дома абонента. В случае FTTdp оптоволокно оказывается еще ближе к домам, иногда буквально в нескольких метрах. Промежуточное положение между этими вариантами занимает FTTC (Fiber to the Curb — «оптоволокно до бордюра»). Все эти виды FTTX иногда называют «оптоволокном в абонентском шлейфе», поскольку часть абонентского шлейфа составляет оптоволокно.

Существует несколько вариантов FTTX: X может означать подвал, бордюр или микрорайон. Все эти названия используются, чтобы указать на возможность прокладки оптоволокна ближе к дому абонента. В этом случае медные провода (витая пара или коаксиальный кабель) обеспечивают достаточно высокую скорость на последнем коротком участке. Насколько далеко прокладывать оптоволокно — вопрос экономический, выбор зависит от соотношения затрат и ожидаемой прибыли. В любом случае смысл в том, чтобы оптоволоконный кабель перешел границу «последней мили». В нашем обсуждении мы сосредоточимся на технологии FTTH.

Как и медные провода, оптоволоконный абонентский шлейф пассивен, то есть не требует никакого оборудования для усиления или другой обработки сигналов. Оптоволокно просто переносит сигналы между жилищем абонента и оконечной станцией, снижая таким образом затраты и повышая надежность. Как правило, ведущие из домов кабели объединяются, так что от группы из 100 зданий к оконечной станции доходит только один оптоволоконный кабель. В исходящем направлении передаваемый из коммутатора сигнал разбивается оптическими разделителями, чтобы попасть во все дома. Если сигнал предназначается только для одного абонента, в целях безопасности используется шифрование. Во входящем направлении оптические сумматоры соединяют сигналы от всех домов в один, который и поступает в оконечную станцию.