Однако с данными все иначе. Отправка неправильных битов по меньшей мере бесполезна. При передаче данных с помощью более старых версий T1 в каждом из 24 каналов можно было задействовать лишь семь из восьми бит, то есть 56 Кбит/с. Более новые варианты T1 обеспечивают свободные каналы с использованием всех битов. Свободные каналы — это именно то, что нужно компаниям, арендующим линии T1 для отправки по телефонной сети данных вместо голоса. При этом передача служебных сигналов для всех голосовых звонков производится внеполосным образом (out-of-band), то есть по каналу, отделенному от данных. Зачастую передача служебных сигналов происходит по общему, то есть совместно используемому, каналу (common-channel signaling). Для этой цели можно задействовать один из 24 каналов.
За пределами Северной Америки и Японии вместо T1 распространена система связи E1 со скоростью 2048 Мбит/с. В ней используется 32 8-битных сэмпла, упакованных в стандартный 125-мкс фрейм. Тридцать каналов используются для информации и один-два — для передачи служебных сигналов. Каждая группа из четырех фреймов включает 64 бита для служебных сигналов, половина из которых используется для их передачи (по выделенному или общему каналу), а другая половина — для синхронизации фреймов (или же она резервируется — в каждой стране под разные нужды).
Мультиплексирование с разделением по времени позволяет объединять несколько T1 в системы более высокого порядка. На илл. 2.33 показано, как это происходит. Слева представлено четыре канала T1, мультиплексируемых в один канал T2. На уровне T2 и выше 24 голосовых канала, составляющие фрейм T1, мультиплексируются побитно, а не побайтно. Четыре потока T1 со скоростью 1,544 Мбит/с должны давать 6,176 Мбит/с, но на деле скорость T2 составляет 6,312 Мбит/с. Дополнительные биты используются для синхронизации фреймов и восстановления в случае сбоев системы связи.
Илл. 2.33. Мультиплексирование каналов T1 в системы связи более высокого порядка
На следующем уровне семь потоков T2 объединяются побитно в T3. Далее шесть потоков T3 соединяются в T4. На каждом шаге присутствуют небольшие накладные расходы на синхронизацию фреймов и восстановление (на случай рассинхронизации между отправителем и получателем). T1 и T3 широко используются абонентами, в то время как T2 и T4 применяются только внутри самой телефонной системы, поэтому они менее известны.
В США и остальном мире нет единого стандарта для базовой системы связи, так же как нет и согласия относительно ее мультиплексирования в систему с большей пропускной способностью. Принятую в США схему с шагами 4, 7 и 6 в остальном мире не сочли лучшим из возможных вариантов, поэтому стандарт МСЭ призывает мультиплексировать по четыре потока в один на каждом уровне. Кроме того, данные для синхронизации фреймов и восстановления также отличаются в стандартах США и МСЭ. В иерархии МСЭ используется 32, 128, 512, 2048 и 8192 канала, работающие на скоростях 2048, 8848, 34 304, 139 264 и 565 148 Мбит/с.
Мультиплексирование оптических сетей: SONET/SDH
На самых первых этапах развития оптоволоконной связи каждая телефонная компания имела свою патентованную оптическую TDM-систему. После того как в 1984 году правительство США разделило AT&T, местным телефонным компаниям пришлось подключаться к многочисленным междугородним линиям с оптическими TDM-системами от различных производителей и поставщиков. Стало очевидно, что без стандартизации не обойтись. В 1985 году Bellcore, исследовательское подразделение Regional Bell Operating Companies (RBOCs), начало работу над этим стандартом, получившим название синхронные оптические сети (Synchronous Optical NETwork, SONET).
Позднее к этой работе подключился МСЭ, в результате чего в 1989 году появился стандарт SONET и набор сопутствующих рекомендаций МСЭ (G.707, G.708 и G.709). Эти рекомендации МСЭ называются синхронной цифровой иерархией (Synchronous Digital Hierarchy, SDH), но отличаются от SONET лишь мелкими нюансами. Практически все междугородние линии в США, да и во многих других странах в настоящее время используют SONET на физическом уровне. Дополнительную информацию вы найдете в работе Перроса (Perros, 2005).
Основные цели создания SONET:
1. Совместимость различных систем связи: SONET был призван обеспечить взаимодействие разных систем связи. Для этого понадобился общий стандарт обмена служебными сигналами с учетом длин волн, распределения интервалов времени, структуры фреймов и прочих нюансов.
2. Унификация стандарта для различных стран: пришлось приложить некоторые усилия, чтобы привести к одному виду цифровые системы США, Европы и Японии. Все они основаны на 64-Кбит/с каналах PCM, но группируют их различными (причем несовместимыми) способами.