Если нам удалось это сделать, то стоит пойти дальше и добавить этой бактерии геномный материал, который ещё больше увеличит скорость производства водорода. Тут есть два пути: либо сделать копии уже существующих генов, которые нужны для производства водорода, либо включить в геном данной бактерии отдельные гены или регуляторные участки из геномов других бактерий.
Оказывается, что и к ним тоже есть два подхода. Один – скорее эмпирический. Мы знаем, что это за бактерии - их изучением занимается десяток научных лабораторий в Америке, Германии, Японии и России. Мы знаем, как устроена биохимия именно этих клеток, да и вообще неплохо представляем себе биохимию микроорганизмов. На уровне наших качественных представлений можно попытаться выполнить необходимые генные манипуляции и посмотреть, что получится.
Другой подход набирает силу в последние пять-семь лет, особенно на Западе. Это скрупулёзное моделирование процессов, происходящих в бактериальной клетке, причём моделирование не только собственно биохимических реакций, но и регуляции, затрагивающей уровень генома. На основании такого моделирования можно попробовать точно предсказать, к чему приведёт включение и выключение конкретных генов, а также увеличение числа их копий и добавление генов из других бактерий. В идеале мы могли бы точно сказать, сколько водорода такие модифицированные клетки (мутанты) будут производить, например, на один грамм сухой массы.
Вот таким моделирование мы и занимаемся в нашей группе биоинформатики, геномики и системной биологии на физическом факультете МГУ. А дорогую инструментальную часть, связанную с генными манипуляциями и созданием мутантных штаммов, выполняют наши коллеги в Университете штата Вайоминг (США).
Мы продуктивно работаем в этом направлении уже года три. Уже созданы мутанты, то есть бактерии рода Rhodobacter с модифицированным геномом, которые производят в три раза больше водорода, чем дикий тип. Согласитесь, троекратное увеличение - это результат, это не десять процентов. И всё же до промышленных объёмов ещё очень далеко. Хотелось бы, чтобы производство водорода этими бактериями выросло хотя бы на порядок, а лучше – ещё больше.
Ещё одна задача: как этим бактериям обеспечить среду существования? Одно дело, когда всё делают в пробирке - но это никому не интересно. Другое - когда производство биоводорода ставят на промышленную основу. Можно ли бактериальные колонии размножить в таких количествах, чтобы производство стало выгодным? Сразу возникает вопрос о том, чем же эти бактерии кормить, потому что кормить их всё-таки надо. К счастью, они могут питаться отходами жизнедеятельности человека - всякими отбросами, органическими отходами. И тогда задача становится перспективной уже и с технологической точки зрения.
- Органический мусор?
- Да. Тоже не всяким, мусор надо подбирать и сортировать, но так бы его просто выкидывали, а тут выясняется, что из него - при определённых опять же условиях - можно сделать водород.
Мы некоторое время занимались проектом по созданию циклической системы: бактерии рода Rhodobacter наряду с ферментирующими бактериями и водорослями образуют замкнутый цикл, на выходе из которого образуется водород. К сожалению, сейчас этот проект приостановлен.
Отдельная проблема - где содержать эти бактерии и как обеспечить их культуральную среду не на уровне пробирки или колбы, а в промышленных масштабах. Тут в игру вступает технология формирования биоплёнок, по-английски называемых биофильмами. Это большие подложки, на которых живёт бактериальная культура - в планарном исполнении, если угодно, на плоскости. В нужных нам условиях эти бактериальные клетки перестают делиться, но к счастью, это не так уж важно: в биоплёнке такая клетка может жить до четырёх месяцев, не делясь. За эти четыре месяца она должна выработать такое количество водорода, что всё это будет вполне оправданно.
Ещё один пока не решённый вопрос - как улавливать производимый биоводород и как его затем транспортировать. Эта часть проекта пока остаётся у нас в тени, потому что, подчеркну ещё раз, наши усилия пока направлены преимущественно на генные манипуляции, на создание мутантов данных бактерий, у которых производство водорода выведено на максимум.