Рассматривая разные уровни биосистем, мы можем понять, какие свойства делают их единым целым. Например, биогеоценоз интегрируется круговоротом веществ. Органы выполняют определенные функции… А какие эмергентные свойства характерны для организма?
Ответить на этот вопрос сложнее, чем на другие: мы сами являемся организмами и нам сложно увидеть специфику собственного существования со стороны. Может, я плохо искал, но в литературе я этот ответ не нашел. Во всяком случае, он не является общепризнанным.
Так вот. Организм - это биосистема, которая выживает или гибнет, а также участвует в размножении или отстраняется от него как единое целое. Организм - единица естественного отбора!
Сказанное объясняет многие особенности организмов. Именно на этом уровне биосистемы бывают отделены друг от друга самыми отчетливыми границами. На их выживание и размножение "работают" все их компоненты, и именно поэтому мы отождествляем себя с этими системами. И именно смертность любых организмов является залогом биологической эволюции.
Апдайк восхищается "альтруизмом" соматических клеток, проводя аналогию между клетками в организме и организмами в популяции. Эта аналогия достаточно хромая. Гибель организма означает и гибель его клеток. Если, паче чаяния, клетки в организме начнут конкурировать друг с другом за выживание и размножение, целостность организма будет нарушена. Что такое рак? Клон клеток, размножающихся и расселяющихся без контроля организменных систем. Успешное развитие такой части означает гибель целого.
Популяция устроена принципиально иначе. Каждый из ее компонентов стремится выжить и размножиться, увеличить свой вклад в будущее целого. И именно благодаря этому популяция потенциально бессмертна и может приобретать новые свойства.
Существуют и общепопуляционные регуляторные механизмы, но они работают совсем иначе, чем организменные. Обычно они не исключают особей из размножения, а, наоборот, реализуются благодаря их конкуренции. Исключением, более похожим на организмы, являются семьи эусоциальных организмов - пчел, муравьев, термитов, голых землекопов. Однако эти семьи не бессмертны, а бессмертны лишь включающие их относительно "мягкие" популяции.
Увидьте историю земной жизни как ветвящееся дерево потенциально бессмертных популяций. "Стволы" этого дерева разделяются и отходят друг от друга. Они образованы множеством "веточек". Эти "веточки" способны разделяться и сливаться заново. Огромное их большинство гибнет, но на протяжении всей истории биосферы их количество неуклонно увеличивается. Катастрофы планетарного масштаба временами сокращают их число, но они быстро наверстывают утерянное. Мы, человечество, одна группа из таких тесно переплетенных "веточек", потенциально бессмертных, как и другие.
Это они, популяции, населяют Землю, а не мы, организмы!
Путеводитель по процессорам Intel Sandy Bridge (часть 1)
Автор: Олег Нечай
Опубликовано 26 мая 2011 года
В предыдущем "Путеводителе по новым процессорам Intel", опубликованном примерно год назад, мы говорили о микроархитектуре Nehalem, пришедшей на смену Core в конце 2008 года. В этом обзоре речь пойдёт об архитектуре Sandy Bridge, которая в самое ближайшее время должна полностью заменить Nehalem.
На сегодняшний день чипы на базе Sandy Bridge представлены во всех линейках процессоров Intel, включая серверные Xeon, дестопные и мобильные Core i3/35/i7, Pentium и Celeron и "экстремальные" Core i7 Extreme. Незадолго до публикации этой статьи, 22 мая 2011 года, были представлены ещё семь новых процессоров на основе Sandy Bridge.
В чём же заключаются принципиальные отличия Sandy Bridge от Nehalem и в чём состоят особенности и преимущества новой микроархитектуры Intel? Вкратце эти отличия таковы: обновлённое графическое ядро в составе "системного агента" расположено на одном кристалле с вычислительным, предусмотрены новый буфер микрокоманд L0, разделяемый кэш L3, модернизированная технология Turbo Boost, расширенный набор инструкций SIMD AVX и переработанный двухканальный контроллер оперативной памяти DDR3 1333 МГц. Вместе с новой архитектурой появился и новый процессорный разъём LGA 1155.
Одно из главных конструктивных отличий Sandy Bridge от Nehalem - размещение вычислительных ядер и северного моста (системного агента) на одном кристалле. Напомним, что в Nehalem сам ЦП и северный мост располагались под общей крышкой, но фактически размещались на самостоятельных чипах, которые, к тому же, были выполнены по разным технологическим нормам: ЦП - по 32-нм, а северный мост - по 45-нм. В Sandy Bridge это единый кристалл, выполненный по 32-нм техпроцессу, на котором находятся вычислительные ядра, графическое ядро, контроллеры оперативной памяти, PCI Express, электропитания (Power Control Unit, PCU) и блок видеовыхода.