Выбрать главу

Однако на больших длинах волн размер зеркала более значим. Например, в сантиметровом диапазоне у шестиметрового зеркала угловое разрешение будет равно уже целым семи минутам, а это почти четверть размера Луны. Да и сигнал в радиодиапазоне часто более слаб, так что для его приёма требуется внушительная собирающая поверхность. Поэтому радиотелескопы обычно гораздо крупнее оптических, и диаметры их зеркал измеряются многими десятками метров. Технически изготовление гигантских металлических зеркал вполне достижимо, поскольку на больших длинах волн снижаются требования к качеству их поверхности. Но есть, увы, другие ограничения. Например, стометровый телескоп в Эффельсберге (Германия) весит 3200 тонн. Колоссальная масса затрудняет и сохранение формы зеркала (оно гнётся под собственной тяжестью), и управление им. При этом разрешение того же эффельсбергского телескопа в сантиметровом диапазоне измеряется десятками угловых секунд, то есть в сотню раз хуже, чем в оптике, даже с учётом атмосферных помех.

Чтобы достичь в радиодиапазоне разрешения, сравнимого с оптическим, потребовалось бы зеркало многокилометрового размера. Это, конечно, нереально. Однако природу можно слегка обмануть, заменив одно сплошное зеркало системой независимых телескопов. Если вы одновременно наблюдаете один и тот же объект с разных телескопов, а затем складываете накопленные сигналы, результирующий сигнал будет как бы получен на телескопе, размер антенны которого равен расстоянию между двумя самыми далёкими антеннами системы. Поскольку реальным объектом анализа в данном случае является интерференционная картина, возникающая при сложении сигналов, такие системы называются радиоинтерферометрическими. Для наземных радиоинтерферометров "размер зеркала" может составлять десятки, сотни и даже тысячи километров, благодаря чему достигается разрешение микросекундного уровня.

Фото: ALMA (ESO / NAOJ / NRAO), W. Garnier

Иными словами, мы относительно "легко" можем получать детальные изображения космических объектов в оптическом и радиодиапазонах. А вот в промежутке между ними - в дальнем инфракрасном и субмиллиметровом диапазонах - возникают большие проблемы. Во-первых, земная атмосфера в этом интервале длин волн сильно непрозрачна. Во-вторых, требования к качеству изготовления поверхности зеркал более высоки. В-третьих, и размеры зеркал также должны быть большими - и из-за проблем с чувствительностью, и из-за проблем с угловым разрешением. Поэтому оптических и радиотелескопов на Земле сотни, а инструменты субмиллиметрового диапазона можно пересчитать по пальцам.

Интерферометр же для работы на длинах волн менее миллиметра до недавнего времени в мире был только один - система SMA (Submillimeter Array), установленная на горе Мауна-Кеа (Гавайские о-ва, США). Но она состоит всего из восьми шестиметровых "тарелок", максимальное расстояние между которыми не превышает полукилометра, что сопоставимо с размерами "цельных" радиотелескопов.

О создании более солидного интерферометра миллиметрового и субмиллиметрового диапазона в конце 1980-х - начале 1990-х годов одновременно задумались американские, европейские и японские астрономы. Три таких телескопа были бы для мирового астрономического сообщества излишней роскошью, и отдельные проекты были объединены в общую систему. В настоящее время она создаётся силами консорциума, в котором участвуют США, Европа (Европейская южная обсерватория), Япония, Тайвань, Канада и Чили. Чилийская пустыня Атакама выбрана для установки ALMA из-за своей сухости: в качестве основной помехи для космического субмиллиметрового излучения выступает атмосферный водяной пар. Площадка поперечником около 20 км для установки антенн расположена на высоте 5 км.

Всего в состав ALMA будет входить 66 "тарелок" - 54 антенны диаметром двенадцать метров и двенадцать семиметровых антенн. Основная часть интерферометра будет состоять из пятидесяти двенадцатиметровых антенн. Их можно будет размещать как тесной группой поперечником около 150 м, так и распределять по всей территории с максимальным расстоянием между антеннами 16 км. Для перевозки антенн с позиции на позицию в Германии сделали два супертранспортёра (у них даже есть собственные имена - Отто и Лор) длиной 20 м и шириной 10 м, способных работать на пятикилометровой высоте. Остальные антенны войдут в состав Атакамской компактной системы (Atacama Compact Array), которая будет дополнять данные интерферометрии изображениями более низкого углового разрешения.