Думается, никто не будет оспаривать простую истину: измерить время можно, только рассматривая какое-либо периодическое событие. Благодаря восходам и закатам мы делим нашу жизнь на дни и годы. Студенты отмеряют семестры "от сессии до сессии", а несбыточные желания люди традиционно связывают с непериодическими событиями ("когда рак на горе свистнет", например, и тому подобное).
Источники периодических событий обычно называют резонаторами. Согласно закону сохранения энергии (которая затрачивается на каждое периодическое событие), резонатор сам по себе существовать не может - ему необходим источник энергии. В случае периодического движения по нашему небосводу планет и звёзд это гравитационная энергия, для маятника в механических часах - это кинетическая энергия пружины, ну а будильник в вашем смартфоне "питается" аккумулятором.
Система "резонатор - источник энергии" именуется осциллятором. Именно благодаря ему у людей появляется возможность измерить время. Осциллятор порождает периодическое событие с определённой частотой f, которая является обратной величиной периода его колебаний T-f=1/T. Несложные математические манипуляции позволяют трансформировать эту формулу в вид, удобный для измерения времени, - T=1/f. Таким образом, единица времени может быть получена путём изменения частоты работы осциллятора.
Но тут возникает проблема, связанная с точностью осциллятора. Стоит пружине, питающей маятник, ослабнуть, и частота, с которой он раскачивается, станет другой. Значит, изменится и период колебаний, который мы принимаем за единицу времени. Выходит, "тик-таки" только что заведённых часов вовсе не такие, как "тик-таки" часов с заканчивающимся подзаводом. Мы начинаем опаздывать, потому что другие осцилляторы порождают другие периоды колебаний.
Расхождение частоты осциллятора относительно его номинала в хронометрии называют мерой неопределённости частоты и обозначают Δf.
Что же мы делаем, чтобы не опаздывать (или не торопиться - осцилляторы-то могут и вперед убегать)? Правильно: смотрим телевизор и слушаем радио, где "передают сигналы точного времени". Ага! Значит, есть всё-таки в мире самый главный осциллятор, мера неопределённости частоты которого так мала, что её можно устремить к нулю!
Как же выглядит сей грандиозный прибор, и в каком секретном бункере он хранится? На самом деле в разные времена роль осциллятора всех осцилляторов выполняли разные колебательные системы. И за наблюдение за ними отвечали разные организации.
Что именно считать эталоном единицы измерения времени, решают коллегиально. Для этого существует Генеральная конференция мер и весов (CGPM), утверждающая в рамках системы единиц измерения SI секунду - базовый отрезок времени, из множества которых и складывается вселенская стрела времени.
Точность эталонного осциллятора напрямую зависит от технологических возможностей человечества. В сущности, поиск идеального осциллятора - это и есть главнейшая задача хронометрирования. Веками решать её метрологам помогали только астрономы. Но в прошлом столетии к ним подключились физики и химики.
В стародавние времена выбор вариантов идеального осциллятора был весьма ограничен. Самым очевидным из них была наша планета, суточное вращение которой вокруг своей оси является более-менее периодичным. Именно поэтому долгое время секунда была равна 1/86400 доле продолжительности солнечных суток. Позже, однако, выяснилось, что точность этого природного осциллятора далека от идеала. Дело в том, что на продолжительность солнечных суток влияют притяжения Солнца и Луны, увеличивая, пусть и незначительно, длительность эталонной секунды. Усреднение продолжительности солнечных суток частично решило эту проблему, но для увеличения точности в 1956 году солнечную секунду пришлось заменить эфемеридной.
Эфемеридами (от греческого "годные на день") называются координаты небесных тел, вычисляемые через равные промежутки времени. Для расчёта секунды было предложено использовать эфемериды периода обращения Земли вокруг Солнца. Эталонная эфемеридная секунда стала равна 1/31556926,9747 продолжительности 1900 года, измеренной на уровне тропиков.