Выбрать главу

Практика эта перешла и в техническую сферу, которая долго была делом скорее искусства, нежели науки: в адмиралтействах и королевских советах разглядывали и обсуждали модели кораблей и орудий, которые ныне можно увидеть в музеях.

А на производстве в дело шла практическая сметка, опыт да подгонка по месту. На кораблях - именно эта машина сделала Европейскую цивилизацию хозяйкой планеты - пушечные порты: без орудий и опытных канониров ходить в Южные моря малоразумно и нерентабельно, нравы там и раньше были такие же, как ныне у Сомали, только встарь деревянные суда водили стальные парни - рубились после спуска на воду. Принято считать, что расчеты, позволившие прорубить порты до спуска на воду, впервые произвел в 1666 году английский корабел Энтони Дин (Anthony Dean) при строительстве 64-х пушечника HMS Rupert, о котором рассказано в "Дневниках…" британского царедворца Пипса (Дин связан и с историей нашей страны - он был наставником Петра Великого в корабельном ремесле). Но - тут были использованы расчеты. Модели давали лишь наглядное представление о создаваемой машине.

Но, несмотря на достижения математики в XIX веке, когда был сформирован классический анализ и выведены уравнения математической физики, решить такую актуальную задачу, как расчет сопротивления воды равномерно движущемуся (о переходных процессах речь и не шла!) судну, было невозможно. Для этого пришлось прибегнуть к моделированию. Моделированию натурному, физическому. В Опытовых бассейнах.

Опытовые бассейны были передовыми по тем временам научными учреждениями, в которых были и бассейны как таковые. В них опускалась модель, воспроизводящая подводную часть корабля. Модель буксировалась с той или иной скоростью. Динамометр определял силу, необходимую для буксировки. Далее данные переводились на суда реальных размеров. Для этого использовались сначала экспериментальные коэффициенты, потом было создано учение о так называемых критериях подобия, Фруда, Рейнольдса, Прандтля...

Интересно, что, казалось бы, частная техническая задача - определение сопротивления судов - решалась на сугубо государственном уровне. Опытовые бассейны были по преимуществу правительственными. Первый был создан в Англии в 1870-м году. Французы проводили испытания в Бресте. Существовало и голландское учреждение. Россия обзавелась Опытовым бассейном в 1891 году. Тогда в мире шел переход артиллерии на бездымные пороха. У Морского министерства Российской империи образовалась "остаточная сумма" в полтора миллиона рублей. Ландо и карет на нее покупать не стали, адмиральских дач не строили. Управляющий Морским министерством адмирал Чихачев и главный инспектор морской артиллерии контр-адмирал Макаров предложили эти деньги Менделееву для изыскания способа изготовления бездымного пороха.

Дмитрий Иванович решил проблему, затратив на лабораторные нужды всего полмиллиона рублей - им был создан пироколлодий, пироксилиновый порох, пригодный и для стрелкового оружия, и для артиллерии. А на оставшийся миллион предложил организовать для российского флота Опытовый бассейн, снабженный передовыми по тем временам измерительными и регистрирующими приборами (в их числе были и тогдашние вычислительные машины - логарифмические цилиндры). Тогда же Опытовым бассейном обзавелась и Италия, позже - Германия и США. Бахвалились ли тогдашние главы государств Опытовыми бассейнами, как ныне суперкомпьютерами, неясно…

Так вернемся к достижениям 2010 года. Сегодня за физическое моделирование взялись не инженеры, но физики. У них появились "квантовые симуляторы", системы, позволяющие решать сложные задачи, связанные с решетками кристаллов. Ранее, пытаясь проинтерпретировать тот или иной экспериментальный результат, теоретик брал трехмерное множество точек, в которых находятся взаимодействующие между собой заряженные частицы, и формировал так называемый гамильтониан (функция такая…) для этих электромагнитных взаимодействий. Гамильтониан же решается не всегда (или крайне редко).

Так вот - в прошлом году ряду групп физиков пришла в голову идея воспользоваться моделированием. Ионы кристалла заменили пятнами лазерного света. Попавшие в них атомы изобразили взаимодействующие электроны. Потом система настраивалась под тот или иной гамильтониан, и - надо садиться и ждать, как само собой сформируется решение. Пока, правда, такие квантовые симуляторы использовали только для поверки результатов ранее решенных задач.

И речь, скорее, идет об аналоговом моделировании. Ну, когда-то динамические процессы (в механических системах, в гидравлических, тепловых…) моделировались электрическими токами и напряжениями в аналоговых вычислительных машинах, где операционные усилители были обвешаны цепочками емкостей и резисторов. Сейчас квантовомеханические процессы взаимодействия электронов и ионов моделируются по аналогии взаимодействием лазерных лучей и атомов. Но - самое главное и почти волшебное - "квантовый" характер взаимодействия сохраняется.