В математической формулировке переменные – это количество каждого продукта. Содержание белков, жиров, витаминов, минералов в каждом продукте известно. Ограничения – это минимальное количество питательных веществ. А минимизировать надо общую стоимость продуктов, которая складывается из количества каждого продукта, помноженного на его цену.
Уже к концу 1950-х линейное программирование достаточно широко использовалось в нефтяной индустрии. Сегодня оно лежит в основе огромного класса задач оптимизации, включая задачи менеджмента и микроэкономики: планирование, логистика, составление расписаний. Задачи, где нужно минимизировать стоимость или максимизировать доход при заданных ограничениях.
От задачи к решению
Несмотря на простую формулировку, решить задачу линейного программирования вовсе не просто. Самая большая сложность заключается в ограничениях. Это видно даже на нашем маленьком примере. Понятно, что выгоднее всего доставить товар обоим клиентам с дешевого южного склада. Трудность в том, что это невозможно, потому что там всего 70 листов, а нам нужно 100.
Чем больше переменных и ограничений, тем сложнее задача. В классической задаче о диете 77 переменных и 9 ограничений, и она уже представляет собой серьезную проблему с точки зрения вычислений. Линейное программирование стало рядовым инструментом менеджмента и планирования только благодаря тому, что математики придумали для таких задач множество совершенно нетривиальных методов решения.
Работы американского математика Джорджа Данцига появились в конце 1940-х годов – несколько позже, чем работы Канторовича. Тем не менее Данцига тоже по праву относят к основателям линейного программирования. Именно он придумал так называемый симплекс-метод, позволивший с помощью компьютера быстро решать задачи линейного программирования с большим количеством переменных и ограничений.
Симплекс-метод, сильно улучшенный и усиленный другими методами, по-прежнему остается неотъемлемой частью современного программного обеспечения.
Идея симплекс-метода
Подробности симплекс-метода выходят за рамки этой книги, но мы постараемся объяснить его суть на нашем маленьком примере.
Для начала давайте посмотрим, какие в принципе значения могут принимать переменные, чтобы не нарушить наших ограничений. Например, мы можем взять АЮ = 58, БЮ = 8. В этом случае получается решение, которое мы записали в виде табл. 2.2.
Таблица 2.2. Пример решения, где АЮ = 58, БЮ = 8
Ограничения выполнены, и оба клиента получили заказанное количество листов.
Но это не единственное решение. Например, мы могли отправить больше листов с дешевого южного склада клиенту А, скажем 60 листов, и 10 листов клиенту Б. Легко увидеть, что доставка клиенту А теперь обойдется в
5×60=300 руб.,
а доставка клиенту Б будет стоить
10×10+30×15=550 руб.
Тогда общая стоимость получается не 864, а 850 рублей, то есть немного меньше, чем указано в табл. 2.2.
Чтобы не выбирать наугад, нужно посмотреть на все возможные решения, которые удовлетворяют ограничениям. Мы их изобразили на рис. 2.1. По оси х мы откладываем АЮ, а по оси у – БЮ. Любая точка в заштрихованной области удовлетворяет ограничениям. В том числе точка (58,8), как в таблице выше.
Рис. 2.1. Решения, удовлетворяющие ограничениям
Примечание: любая точка в заштрихованной области удовлетворяет всем ограничениям. Точка (58,8) это решение из таблицы выше. Угловые точки (25,40), (30,40), (60,10) и (60,5) кандидаты на оптимальное решение (см. объяснение в тексте).
Ниже во врезке мы объясняем, как получилась заштрихованная область. Объяснения соответствуют уровню средней школы. При желании их можно пропустить.
Все значения АЮ и БЮ положительные.
Вертикальная прямая линия АЮ = 60 обеспечивает ограничение АЮ ≤ 60. Все возможные значения находятся либо на ней, либо слева от нее.
Аналогично горизонтальная прямая линия БЮ = 40 обеспечивает ограничение БЮ ≤ 40. Все возможные значения находятся либо на ней, либо под ней. Выражение штрихпунктирной прямой АЮ + БЮ = 70 можно переписать в более привычном виде: