Выбрать главу

Во второй половине ХХ в. был дан старт реализации нескольких долговременных научных программ, важность которых для развития науки и для человечества в целом не вызывает сомнения. Выполнение их продолжается и в настоящее время, а завершение работ по ним (если оно вообще возможно, так как в рамках этих программ ставятся все новые и новые актуальные задачи) планируется в середине XXI в. Таковой является программа исследования космоса. Объединение усилий научных коллективов разных стран мира для исследования как ближайшего космоса, так и отдаленных уголков Вселенной привело в результате реализации этой программы к созданию международных космических станций, использованию на них новейшего оборудования и т. д.

К таким программам относится также грандиозная по замыслу, а также по объемам денежных вложений международная программа «Геном человека», целью которой является расшифровка генного кода человека (и не только человека: параллельно развиваются программы «Геномы животных»). Успешно реализуются международные экологические программы, международные программы мониторинга объектов окружающей среды и т. д. Вот далеко не полный перечень успешных научных проектов, начатых в прошлом веке, в которые были вовлечены ученые разных стран.

Следует, однако, отметить, что деловые круги различных стран мира, вкладывающие средства в реализацию научных программ, интересует не столько идея объединения ученых, сколько борьба за техническое лидерство в наиболее доходных отраслях промышленности, таких как компьютерная техника, системы связи, автомобилестроение, авиационная, медицинская и фармацевтическая промышленности. Примером сплава науки и техники является интереснейшая и перспективнейшая научная программа, впечатляющие достижения которой удивляли мир в последние два десятилетия XX в. и которая, по мнению многих ученых, приведет к следующей промышленной революции. В названии этой программы отражен ее прикладной характер. Она называется «Развитие нанотехнологий».

Что же это такое – нанотехнологии?

Название нового направления в науке возникло просто в результате добавления к общему понятию «технология» приставки «нано». «Нано», так же как и «милли», и «микро», – приставки к выражениям единиц линейных размеров для создания производных этих единиц в системе СИ, причем в сторону уменьшения линейных размеров: например, 1 миллиметр (мм) означает одну тысячную долю метра (1 мм = 10-3 м), 1 микрометр (другое название – микрон) составляет одну миллионную долю метра (1 мкм = 10-6 м), а 1 нанометр (нм) означает одну миллиардную долю метра (1 нм = 10-9 м).

Для наглядности можно указать, что 1 нм составляет одну миллионную долю миллиметра (представим себе любой измеритель длины с делениями – линейки, рулетки, штангенциркули и т. п.), и если считается, что человеческий волос имеет в среднем диаметр 100 мкм, то 1 нм примерно в 100 тысяч раз меньше его толщины. Или еще можно сказать так: величины, измеряемые в нанометрах, на 9 порядков меньше величин, сравнимых по размерам с человеческим телом.

К нанотехнологиям принято относить процессы и объекты с характерной длиной от 1 до 100 нм. Верхняя граница нанообласти соответствует минимальным элементам в так называемых БИС (больших интегральных схемах), широко применяемым в полупроводниковой и компьютерной технике. Что касается нижней границы, то размером в 1 нм и около того обладают отдельно взятые молекулы; при этом интересно, что радиус знаменитой двойной спирали молекулы ДНК равен 1 нм, а многие вирусы имеют размер приблизительно 10 нм.

Для понятия «нанотехнология», пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии, оперирующие величинами порядка нанометра, имеют дело с ничтожно малыми величинами, в сотни раз меньшими длины волны видимого света и сопоставимыми с размерами атомов. Поэтому переходот «микро» к «нано» – это уже не количественный, а качественный переход, скачок от манипуляции веществом к манипуляции отдельными атомами. Квантовая физика XX в. при изучении объектов микромира оперировала в основном их математическими моделями. Теперь ученые могут оперировать объектами микромира непосредственно: искусственно создавать микрообъекты, перемещать их в пространстве, закреплять их на поверхности, то есть действовать так, как будто мы имеем дело с привычными нам макрообъектами.

В научных центрах мира развитие нанотехнологий как технологий изготовления сверхмикроскопических конструкций из мельчайших частиц материи идет в основном по трем направлениям: изготовление электронных схем (в том числе и объемных) с активными элементами, величиной примерно со среднюю молекулу; разработка и изготовление наномашин, то есть механизмов и роботов такого же размера; непосредственная манипуляция атомами и молекулами и сборка из них всего сущего. Именно поэтому они представляются весьма перспективными для получения новых конструкционных материалов, полупроводниковых приборов, устройств для записи информации, ценных фармацевтических препаратов и т. д. Нанотехнологии могут привести мир к новой технологической революции и изменить среду обитания человека.

Из сказанного ясно, что нанотехнологии объединяют все связанные непосредственно с атомами и молекулами технические процессы, осуществляемые и изучаемые в разных естественных науках. Тем самым подчеркивается междисциплинарный характер нового направления в естествознании. Наряду с другими междисциплинарными научными направлениями в естествознании – синергетикой, кибернетикой, системным методом – развитие нанотехнологий является очень ценным научным наследием XX в., неким связующим звеном, обеспечивающим преемственность научных направлений в современном естествознании.

По мнению многих источников по истории естествознания, начало нанонауки положил в 1959 г. знаменитый американский физик, лауреат Нобелевской премии РичардФ. Фейнман при прочтении лекции под названием «Внизу полным-полно места». В ней впервые была рассмотрена возможность создания веществ (а затем, естественно, отдельных элементов, деталей и целых устройств) совершенно новым способом, а именно «атомной укладкой», при которой человек манипулирует нужными атомами поштучно, располагая их в требуемом ему порядке.

В 1986 г. американский физик Эрик К. Дрекслер в своей известной книге «Машины творения» предложил создавать устройства, названные им «молекулярными машинами», и раскрыл удивительные возможности, связанные с развитием нанотехнологии. Начиная с 1980 г. в технологии производства транзисторов и лазеров все чаще стали использоваться искусственно создаваемые пленки толщиной около 10 нм, что позволяло изготавливать устройства с новыми, повышенными техническими характеристиками. В 1980 г. в Японии был изготовлен первый полевой транзистор с высокой подвижностью носителей (High Electron Mobility Transisteor, HEMT).

В 1981 г. сотрудники фирмы IBM создали сканирующий туннельный микроскоп (СТМ), позволявший получать изображение с разрешением на уровне размеров отдельных атомов. Это явилось исключительно важным научным достижением, поскольку исследователи впервые получили возможность непосредственно наблюдать и изучать мир в нанометровом, атомарном масштабе. Как работает СТМ? Экспериментатор подводит тончайший золотой щуп (зонд, пробник) на расстояние около 1 мкм к поверхности исследуемого образца, в результате чего между зондом и поверхностью возникает электрический ток, обусловленный квантово-механическим туннельным эффектом, величина которого меняется в зависимости от состояния изучаемой поверхности (например, из-за наличия на поверхности впадин или выступов). Меняя величину туннельного тока или, наоборот, сохраняя ее постоянной (за счет регулирования потенциала зонда), экспериментатор может «сканировать» поверхность и получать ее прямое «изображение», подобно тому как электронный луч создает изображение, сканируя поверхность экрана обычного телевизора. Этот методпозволяет не только изучать атомарную структуру поверхности, но и проводить разнообразные и весьма ценные физические эксперименты (например, можно проверять теоретические расчеты, относящиеся к изменению поверхности в определенных условиях, и т. п.).