Выбрать главу

Итак, прогресс науки Нового времени определили идеализированные представления, порывающие с непосредственной реальностью. Однако физика XX в. заставляет отказаться не только от непосредственной наглядности, но и от наглядности как таковой. Это препятствует представлению физической реальности, но позволяет лучше осознать справедливость слов Эйнштейна: «Физические понятия суть свободные творения человеческого разума и не однозначно определены внешним миром В нашем стремлении понять реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но не имеет средств открыть их корпус. Если он остроумен, он может нарисовать себе некую картину механизма, которая отвечала бы всему, что он наблюдает, но он никогда не может быть вполне уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения»[51].

Отказ от наглядности научных представлений является неизбежной платой за переход к исследованию уровней реальности, не соответствующих эволюционно выработанным механизмам человеческого восприятия.

Специальная теория относительности.

Еще в классической механике был известен принцип относительности Г. Галилея: «Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой»[52]. Такие системы называются инерциальными, поскольку движение в них подчиняется закону инерции, гласящему: «Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменить его под влиянием движущих сил»[53].

В начале XX в. выяснилось, что принцип относительности справедлив не только в механике, но также в оптике и электродинамике. Расширив свое значение, он теперь звучал так: любой процесс протекает одинаково в изолированной материальной системе, и в такой же системе, находящейся в состоянии равномерного прямолинейного движения. Или: законы физики имеют одинаковую форму во всех инерциальных системах отсчета.

После того как физики отказались от представления о существовании эфира как всеобщей среды, рухнуло представление об эталонной системе отсчета. Все системы отсчета были признаны равнозначными, и принцип относительности стал универсальным. Теория относительности утверждает, что все системы отсчета одинаковы и нет какой-либо одной, имеющей преимущества перед другими (относительно которой эфир был бы неподвижен).

Переход от одной инерциальной системы к другой осуществлялся в соответствии с преобразованиями Х. Лоренца. Однако экспериментальные данные о постоянстве скорости света, полученные путем сравнения лучей, идущих от подвижных и неподвижных звезд, привели к парадоксу, для разрешения которого понадобилось введение принципиально новых представлений.

Поясним сказанное на следующем примере. Предположим, что мы плывем на корабле, движущемся прямолинейно и равномерно относительно берега. Все законы движения остаются здесь такими же, как на берегу. Общая скорость движения будет определяться суммой движения на корабле и движения самого корабля. При скоростях, далеких от скорости света, это не приводит к отклонению от законов классической механики. Но если наш корабль достигнет скорости, близкой к скорости света, то сумма скорости движения корабля и на корабле может превысить скорость света, чего на самом деле не может быть, так как в соответствии с экспериментом Майкельсона-Морли «скорость света всегда одинакова во всех системах координат, независимо от того, движется ли излучающий источник или нет, и независимо от того, как он движется»[54].

Пытаясь преодолеть возникшие трудности, в 1904 г. Х. Лоренц предложил считать, что движущиеся тела сокращаются в направлении своего движения (причем коэффициент сокращения зависит от скорости тела) и что в различных системах отсчета измеряются кажущиеся промежутки времени. Но в следующем году А. Эйнштейн истолковал кажущееся время в преобразованиях Лоренца как истинное.

вернуться

51

Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1965. — с. 30.

вернуться

52

Там же — с. 130.

вернуться

53

Эйнштейн А., Инфельд Л. Указ. соч. — с. 140.

вернуться

54

Эйнштейн А., Инфельд Л. Указ. соч. — с. 140.