Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1965.
Глава 8
Квантовая механика
В обычном, окружающем нас, макромире энергия может возрастать или убывать непрерывно. Например, когда какой-либо объект падает, его потенциальная энергия непрерывно уменьшается до того момента, когда падение прекратится. Но когда физики начали изучение микромира — мира атомов и элементарных частиц — они обнаружили необыкновенные свойства и, в частности, то, что энергия в микромире возрастает и убывает определенными неделимыми порциями. Отсюда стало ясно, что для объяснения процессов в микромире необходима новая теория взамен классической, созданной Ньютоном. Эта теория и получила название квантовой механики.
Квантовая механика — это физическая теория, устанавливающая способ описания и законы движения на микроуровне. Немецкий ученый М. Планк в 1900 г. предположил, что свет испускается неделимыми порциями энергии — квантами и математически представил это в виде формулы Е = hv, где V — частота света, а h — универсальная постоянная, характеризующая меру дискретной порции энергии, которой обмениваются вещество и излучение. В атомную теорию вошли, таким образом, прерывистые физические величины, которые могут изменяться только скачками.
Последующее изучение явлений микромира привело к результатам, которые резко расходились с общепринятыми в классической физике, и даже теории относительности, представлениями. Классическая физика видела свою цель в описании объектов, существующих в пространстве, и в формулировке законов, управляющих их изменениями во времени. Но для таких явлений, как радиоактивный распад, дифракция, испускание спектральных линий можно утверждать лишь, что имеется некоторая вероятность того, что индивидуальный объект таков и что он имеет такое-то свойство. В квантовой механике нет места для законов, управляющих изменениями отдельного объекта во времени.
Для классической механики характерно описание частиц путем задания их положения и скоростей и зависимости этих величин от времени. В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по-разному. Проведя какие-либо эксперименты с электроном, мы не будем всегда получать одинаковые результаты. Эксперимент с двумя отверстиями, через которые проходит электрон, позволяет и требует применения вероятностных представлений. Нельзя сказать, через какое отверстие пройдет данный электрон, но если их много, то можно предположить, что часть их проходит через одно отверстие, часть — через другое. Законы квантовой механики — законы статистического характера. «Мы можем предсказать, сколько приблизительно атомов (радиоактивного вещества. — А.Г.) распадутся в следующие полчаса, но мы не можем сказать… почему именно эти отдельные атомы обречены на гибель»[63]. В микромире господствует статистика, т. е. можно определить лишь средние значения большого числа объектов, как это имеет место в статистике.
Статистические законы можно применить только к большим совокупностям, но не к отдельным индивидуумам. Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы. На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Волны вероятности говорят о вероятности встретить электрон в том или ином месте.
В. Гейзенберг делает такой вывод: «В экспериментах с атомными процессами мы имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые явления повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорее мир тенденций или возможностей, чем мир вещей и фактов»[64].
В первой модели атома, построенной на основе экспериментального обнаружения квантования света, Н. Бор (1913) объяснил это явление тем, что излучение происходит при переходе электрона с одной орбиты на другую, при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществлялся переход. Так возникает линейчатый спектр — основная особенность атомных спектров (в спектрах оказываются волны лишь определенных длин).
Важная особенность явлений микромира заключается в том, что электрон ведет себя подобно частице, когда движется во внешнем электрическом или магнитном поле, и подобно волне, когда дифрагирует, проходя сквозь кристалл. Поведение потока частиц — электронов, атомов, молекул — при встрече с препятствиями или отверстиями атомных размеров подчиняется волновым законам: наблюдаются явления дифракции, интерференции, отражения, преломления и т. п. Л. де Бройль предположил, что электрон — это волна определенной длины.