Выбрать главу

Проблему отклонений сформулировать чуть проще. Она сводится к вопросу о том, откуда взялись крошечные флуктуации плотности в космическом микроволновом фоновом излучении, и чем объясняется их распределение.

Теория космической инфляции решает обе эти проблемы, наряду с несколькими другими. Основная идея состоит в том, что в ранней Вселенной был период времени после сингулярности, но до окончания стадии огненного шара, когда она расширялась невероятно быстро. Эта теория допускает существование периода на ранней стадии развития Вселенной, когда очень маленькая область могла достичь теплового равновесия и увеличиться до размера наблюдаемой нами Вселенной в результате быстрого расширения. Представьте, что будет, если взять сложную абстрактную картину и растянуть ее так, чтобы весь вид закрывало пятно одного цвета. По сути, при расширении Вселенной одна из ее областей, которая изначально была достаточно мала, чтобы успеть достичь теплового равновесия, увеличилась и превратилась в то, что мы называем наблюдаемой Вселенной.

С помощью теории инфляции и квантовой физики также можно объяснить флуктуации плотности. Существенное различие между физикой субатомного мира и физикой макромира состоит в том, что каждому взаимодействию отдельных частиц присуща неустранимая неопределенность. Возможно, вы уже слышали о принципе неопределенности Гейзенберга, который говорит о существовании предела точности любого измерения, обусловленного присущей квантовой механике неопределенностью, так или иначе искажающей результат. Если вы очень точно измерите положение частицы, вы не сможете определить ее скорость, и наоборот. Даже если вы оставите частицу в покое, она все равно будет подвержена случайным блужданиям, и при каждом ее измерении вы будете получать несколько иной результат.

Как это связано с реликтовым излучением? Согласно гипотезе, инфляция была вызвана неким энергетическим полем, подверженным квантовым флуктуациям, или случайным колебаниям. Эти колебания в микроскопическом масштабе представляют собой лишь кратковременные вспышки, но они изменяют плотность в том микромасштабе, в котором происходят, а вследствие расширения превращаются в достаточно существенные неравномерности в распределении плотности первичного газа. Существование небольших пятен в космическом микроволновом фоновом излучении объяснимо, если принять тот факт, что они являются результатом естественной многотысячелетней эволюции флуктуаций, возникших в первые 10-34 секунды существования космоса. Из этих самых пятнышек в итоге сформировались все наблюдаемые сегодня галактики и их скопления.

Тот факт, что распределение самых больших структур во Вселенной может быть точно сопоставлено с колебаниями квантового поля, не перестает меня поражать. Связь космологии с физикой элементарных частиц нигде не проявляется так ярко, как при исследовании космического микроволнового фонового излучения.

Однако мы забегаем вперед. До образования реликтового излучения пройдет еще множество эонов. Мы преодолели лишь 10-34 секунды, и нам еще о многом нужно поговорить.

К моменту окончания стадии инфляции молодая Вселенная стала намного более холодной и пустой по сравнению с моментом своего зарождения. Процесс, называемый «вторичным нагревом», привел к повсеместному повышению температуры, чем вызвал дальнейшее постепенное расширение и охлаждение.

Эпоха кварков

Если до инфляции космос, скорее всего, можно было бы описать Теорией великого объединения, то после ее окончания он начал приближаться к состоянию, отвечающему современным законам физики. Впрочем, до этого еще далеко. На данной стадии сильное ядерное взаимодействие уже покинуло вечеринку ТВО, а электромагнетизм и слабое ядерное взаимодействие по-прежнему оставались объединенными в некое «электрослабое» взаимодействие. Однако в первичном бульоне[24] уже начали формироваться частицы, а именно, кварки и глюоны.

В наши дни кварки чаще всего встречаются в виде компонентов протонов и нейтронов (которые вместе называются адронами). Глюоны представляют собой своеобразный «клей», который связывает кварки посредством сильного ядерного взаимодействия. Глюоны настолько хорошо справляются со своей задачей, что, несмотря на распространенность систем, включающих два, три, а иногда четыре и пять кварков, обнаружить отдельный кварк до сих пор никому не удавалось. Оказывается, если у вас есть два кварка, связанных вместе в экзотической частице, называемой мезоном, вам придется потратить на их разделение столько энергии, что, прежде чем вы сможете добиться своего, энергия, которую вы затратили, спонтанно породит еще два кварка. Поздравляю! Теперь у вас два мезона.

вернуться

24

Проницательный читатель, конечно же, замечает разницу в значении этого термина в физике и биологии. (Прим. ред.)