Выбрать главу

Однако модель «жидкости на дороге» имеет границы до определенных скоростей и плотностей. Затем происходит «фазовый переход», и эта модель перестает работать. Приходится вводить еще две модели – свободный поток и перемещающиеся пробки. Возникает вопрос: «Какие параметры определяют эти фазовые переходы?». Например, для понятия «агрегатное состояние вещества» определяющим параметром является температура. Для гидродинамических переходов – скорость потока и т.п. Для транспортных потоков этот вопрос остается открытым [9].

Ученые Национального исследовательского центра Лос-Аламоса (Los Alamos National Lab. – LANL) выделяют следующие паттерны транспортного потока.

Стадия 1.      Пока дорога не загружена, автомобилисты движутся на удобной им скорости, свободно переходя на соседние полосы движения. На этой стадии автомобили сопоставимы с потоком частиц, имеющих большую свободу в своем перемещении.

Стадия 2. Как только дорога становится переполненной, автомобилисты внезапно теряют большую часть свободы перемещения и вынуждены двигаться уже как часть всеобщего транспортного потока, согласовывая с ним свою скорость. При этом они уже не имеют возможности свободно менять полосу движения. Эта стадия, подобная потоку воды, называется «синхронизированным» потоком.

Стадия 3. При очень большом числе автомобилей в потоке движение приобретает прерывистый характер (режим «stop-and-go»). На этой стадии транспортный поток можно уподобить потоку замерзающей воды, автомобили становятся на какой-то промежуток времени как бы «приклеенными» к одному месту дороги.

Таким образом, в теории транспортных потоков последний рассматривается как поток жидкости или газа. Поэтому понятие «фазового перехода» в транспортном потоке введено по аналогии с фазовыми переходами в жидкостях – превращение пара в воду или воды в лед.

Семенов В.В. поясняет: «Объяснение же момента и динамики смены фазы в транспортном потоке, по аналогии с тем как это происходит в природе, на сегодняшний день пока нет. Иными словами, фазовые переходы – это качественные скачкообразные изменения в скорости и плотности транспортных единиц в потоке. Эти изменения возникают локально и распространяются волнообразно по потоку. В результате поток превращается в «желе». Такое состояние может сохранять достаточно долго, час или два. Возникает чаще у въездов-съездов на автострадах. Эти явления не описываются ни одной из существующих математических моделей, а только лишь реалистично воспроизводится на имитационных моделях клеточных автоматов. Поэтому механизм фазовых переходов, если они существуют в реальности, а не просто являются красивой классификацией, до сих пор не понятен [9].

Таким образом, методы регулирования транспортных потоков ориентируются на установление определенного порядка в рамках складывающихся на магистралях дорожных ситуаций с целью улучшения этих ситуаций. И этот порядок основывается на гидродинамической модели транспортного потока, которая, как было отмечено выше, не является адекватной для всех дорожных ситуаций и, в частности, не работает при уплотнении транспортного потока. Как результат, непреходящие пробки на магистралях больших городов.

В рамках предложенного нами подхода решение проблемы пробок рассматривается в иной плоскости – в плоскости сохранения, точнее, формирования и сохранения режима транспортного потока, соответствующего указанной выше стадии 1, то есть стадии свободного потока. Определенный тип регулирования транспортных потоков может сформировать такую транспортную ситуацию, при которой уплотнение транспортного потока и образование заторов и пробок в силу этого уплотнения не возникает. То есть предлагается блокировка перехода стадии 1 в стадии 2 и 3. Иначе говоря, предлагается формировать и сохранять режим дорожного движения на магистрали, при котором автомобилисты движутся на скорости, удобной для перехода на соседние полосы движения, то есть все время удерживать такую плотность транспортного потока, при которой автомобили располагаются при движении достаточно далеко друг от друга и обеспечены пространством для маневра.