Выбрать главу

Одно следствие из этих фактов, я думаю, хорошо известно большинству стрелков-лучников. Оно состоит в том, что при стрельбе из лука или катапульты ни в коем случае не следует пользоваться несоответствующей стрелой или снарядом. Такая попытка неминуемо закончится не только поломкой лука, но и травмой, так как в этом случае не существует безопасных каналов освобождения запасенной упругой энергии.

(обратно)

Эластичность, резильянс и ухабы на дорогах

Корабль взрезает равнину вод,

А ветер мчит вперед,

Наполнив белые паруса,

Красавицы-мачты гнет.

Алан Канинхэм

Когда Галилей в 1633 г. в Арцетри приступил к изучению проблем упругости, прежде всего он задался вопросами, какие факторы влияют на прочность веревки или бруска при растяжении и зависит ли прочность от длины этой веревки или бруска. Элементарные эксперименты показали, что сила или вес, требуемые для разрыва однородной веревки при ее статическом растяжении, не зависят от длины этой веревки. Такой же результат, казалось бы, подсказывает и здравый смысл, однако и по сей день можно встретить множество людей, глубоко убежденных в том, что длинный кусок веревки "крепче" короткого.

Конечно, дело здесь не в человеческой глупости, а в том, что понимать под словом "крепче". Статическая сила, или натяжение, требуемое для разрыва длинной веревки, будет, конечно, той же, что и для разрыва короткой веревки, но общее удлинение большой веревки перед ее разрывом будет значительнее и, чтобы разорвать ее, потребуется большая энергия, хотя разрушающая сила и прочность материала остаются теми же. Рассуждая немного иначе, можно сказать, что длинная веревка будет смягчать внезапные рывки, упруго растягиваясь под действием нагрузки, так что возникающие при этом перегрузки будут уменьшаться. Другими словами, она действует в значительной степени так же, как подвеска автомобиля.

Таким образом, в тех случаях, когда нагрузка действует рывками, длинная веревка может действительно оказаться "крепче" короткой. Именно поэтому экипажи XVIII в. часто подвешивались к ходовой части на длинных кожаных ремнях, которые лучше коротких могли противостоять толчкам и ударам на рытвинах тогдашних дорог. Припомните к тому же, что якорные цепи и буксирные канаты стараются делать по возможности длиннее, так как они обычно рвутся не от статической нагрузки, а от резких толчков. Тем, кто может ночью или в тумане повстречаться в море с буксируемыми большим сухими доками или буровыми вышками, полезно иметь в виду, что эти сооружения буксируются на стальном тросе длиной почти в милю. Такого рода "морские процессии", занимая огромные участки моря, вселяют ужас в случайных мореплавателей[29].

Способность запасать упругую энергию и при действии нагрузки отклоняться упругим образом без разрушения называется резильянсом и является очень ценным качеством конструкции. Резильянс можно определить как количество упругой энергии, которое можно запасти в конструкции, не причиняя ей повреждений.

Чтобы добиться высокого резильянса, конечно, не обязательно использовать очень длинную веревку или проволочный трос. Зачастую удобнее применять более короткие конструкционные элементы, такие, как спиральные пружины (в буферах железнодорожных составов) или прокладки из мягких материалов (в качестве отбойных амортизаторов судов), а также материалы с малым модулем Юнга типа пенорезины или пенопласта (для упаковки точной аппаратуры). Все они могут испытывать большие относительные удлинения и сжатия, а поэтому способны запасать большую упругую энергию на единицу объема. Природная "подвеска" лыжников и животных своим совершенством в значительной мере обязана сравнительно низким модулям упругости и большой деформативности сухожилий и других тканей.

С другой стороны, хотя низкая жесткость и высокая растяжимость способствуют поглощению энергии и поэтому уменьшают возможность разрушения конструкции при ударе, может оказаться, что обладающая этими качествами конструкция будет слишком "мягкой" для выполнения своих функций. Такого рода соображения обычно ограничивают величину резильянса, которым можно снабдить конструкцию. Самолеты, здания, инструменты, оружие должны быть достаточно жесткими, чтобы выполнять свое назначение, поэтому в конструкциях стараются достигнуть компромисса между жесткостью, прочностью и резильянсом. Здесь-то и должен приложить свое искусство конструктор.

Оптимальные условия могут изменяться не только в зависимости от типа и класса конструкции, но и при переходе в ней от одного элемента к другому. Природа и здесь имеет преимущество, поскольку в ее распоряжении находится огромный диапазон упругих свойств различных биологических тканей. Простым, но интересным примером служит обычная паутина. Она подвержена ударным нагрузкам, создаваемым попадающими в нее мухами, и энергия возникающих ударов должна быть поглощена эластичными нитями. Оказывается, что длинные радиальные нити, на которые падает основная нагрузка, втрое жестче коротких круговых нитей, назначение которых ограничивается лишь ловлей мух.

Наряду с использованием конструкционных элементов, работающих на растяжение, таких, как веревки или нити паутины, и на сжатие, таких, как буферы железнодорожных составов и отбойные амортизаторы судов, имеется еще и много других способов запасать упругую энергию и достигать высокого резильянса. Для этих целей может годиться конструкция любой формы, способная испытывать упругие отклонения. Наиболее распространенными являются устройства, запасающие энергию посредством изгиба, подобно лукам и величавым корабельным мачтам. Именно так обстоит дело в растениях, деревьях, этот принцип лежит в основе действия большинства типов автомобильных рессор. Первоклассный меч не сломается, если его изогнуть дугой, коснувшись концом рукоятки, и снова обретет свою первоначальную форму.

(обратно)

Упругая энергия как причина разрушения

…обращались назад, как неверный лук.

Псалом 77

Достаточно высокий резильянс - качество, существенное для любой конструкции, без него она не могла бы поглощать энергию ударов. С этой точки зрения, чем большим резильянсом обладает конструкция, тем лучше. Столь хитроумные устройства, как корабли викингов и американский конный кабриолет, обладали очень большой гибкостью и высоким резильянсом. Если такого рода конструкции чрезвычайно не перегружать, после снятия нагрузки они тут же приходят в первоначальное состояние. Но, естественно, больших перегрузок и они не выдержат.

Далее, чтобы разорвать материал, в нем должна возникнуть трещина. Однако, как мы вскоре увидим, чтобы такая трещина продвинулась на своем пути, необходимо затратить энергию, которую надо где-то взять. Как мы говорили выше, можно без труда сломать лук, "стреляя" из него без стрелы. При этом запасенная в луке упругая энергия не может благополучно высвободиться и перейти в кинетическую энергию стрелы, а потому часть ее идет на образование трещин в материале самого лука. Другими словами, упругая энергия лука его же и ломает. Однако сломанный лук - это только частный случай разрушения вообще.

Все упругие вещества, находящиеся под действием нагрузки, содержат большее или меньшее количество упругой энергии, и эта энергия потенциально всегда может пойти на процесс разрушения их самих. Другими словами, запасенная упругая энергия может пойти на то, чтобы покрыть энергетические затраты на распространение трещины в конструкции и, следовательно, на поломку последней. В конструкции с высоким резильянсом может содержаться большая упругая энергия; того же рода энергия, к которой прибегали древние римляне, чтобы пробить массивные стены Карфагена, в равной мере годна на то, чтобы сам себя сломал пополам громадный супертанкер.