2) благодаря использованию строительного раствора или цемента соединения выполнены достаточно тщательно, так что силы сжатия действуют по всей площади соединения, а не в нескольких выступающих точках;
3) трение в соединениях столь велико, что не может произойти разрушения конструкции вследствие взаимного проскальзывания кирпичей или камней (на самом деле никаких проскальзываний до разрушения конструкции не происходит);
4) соединения не обладают сколько-нибудь заметной прочностью на растяжение; даже если случайным образом раствор обладает некоторой прочностью на разрыв, на нее нельзя полагаться и ею следует пренебречь.
Таким образом, назначение строительного раствора состоит не в том, чтобы "склеивать" кирпичи или камни, а в том, чтобы сжимающие нагрузки передавались через соединение более равномерно.
Насколько мне известно. Юнг был первым, кто стал учитывать упругие деформации каменной кладки. Он рассмотрел, что происходит в прямоугольном блоке каменной кладки, скажем в участке стены, когда он подвергается действию вертикальной сжимающей нагрузки Р. Мы приведем его рассуждения в упрощенной форме, переведя их для этого на язык напряжений и деформаций, которого во времена Юнга, конечно, не существовало.
До тех пор пока нагрузка P действует вертикально вниз в плоскости симметрии, то есть посредине стены, кладка будет сжата равномерно и, согласно Гуку, соответствующее распределение сжимающих напряжений по толщине стены также будет равномерным (рис. 58).
Рис. 58. Нагрузка P действует в плоскости симметрии стены.
Рис. 59. Нагрузка P действует в пределах "средней трети" стены.
Рис. 60. Нагрузка P действует на краю "средней трети" соединения AB.
Рис. 61. Нагрузка P действует вне "средней трети" соединения AB.
Предположим теперь, что вертикальная нагрузка P немного сместилась в сторону и действует не точно в плоскости симметрии стены. В этом случае сжимающее напряжение не будет постоянным вдоль ее сечения: для того чтобы в точности уравновесить действующую нагрузку, оно должно быть с одной стороны больше, чем с другой. Юнг показал, что если материал подчиняется закону Гука, то напряжения по толщине стены будут изменяться линейно и распределение напряжений будет выглядеть так, как показано на рис. 59.
Пока что соединению, которое мы видим на рис. 59, ничто не угрожает: по всему сечению АВ действуют только сжимающие напряжения. Однако если приложение нагрузки сместится еще дальше от середины стены - на границу так называемой "средней трети" стены, то возникнет ситуация, изображенная на рис. 60, в которой распределение напряжений имеет треугольную форму и сжимающее напряжение на одном из краев соединения обращается в нуль.
Рис. 62. Вот что происходит, если возникает ситуация, изображенная на рис. 61. В соединении возникает трещина ВС, и вся нагрузка теперь распределена по площади, соответствующей отрезку АС, - эффективная толщина стены уменьшается.
Рис. 63. Если линия действия нагрузки проходит за пределами отрезка АВ, то стена будет поворачиваться вокруг точки A, - опрокинется и упадет.
Само по себе это пока еще не опасно, но для вдумчивого человека вполне очевидно, что при этом что-то готово вот-вот произойти. И действительно, если нагрузка сместится еще немного к краю, "что-то" и в самом деле произойдет - возникнет ситуация, изображенная на рис. 61.
Сжимающее напряжение вблизи одной из поверхностей стены теперь сменилось на растягивающее. Здесь уже нельзя быть уверенным в том, что раствор сможет выдержать растягивающее напряжение. Обычно он и в самом деле не выдерживает и происходит то, чего и следовало ожидать, - в соединении возникает трещина. Конечно, если стена трескается, это плохо и этого лучше не допускать, однако такая трещина еще не означает, что стена непременно и без промедления рухнет. Весьма вероятно, что края трещины несколько разойдутся, но стена останется стоять, покоясь на той части соединения, где контакт не нарушен (рис. 62).
Но все это не сулит спокойной жизни, и наступит день, когда линия действия силы окажется за пределами стены, и нетрудно догадаться, что произойдет. В стене не может возникнуть необходимых растягивающих напряжений, ее часть начнет свисать над основанием, и тогда стена опрокинется и упадет (рис. 63).
В 1802 г., когда Юнг пришел к этим заключениям, он был двадцатидевятилетним человеком, начинающим приобретать известность и только что получившим кафедру натуральной философии в Королевском институте в Лондоне. Его коллегой и в определенном смысле соперником был Гемфри Дэви[58], который в том же году, в невероятно молодом возрасте - ему было 24 года, - стал там же профессором химии.
Как и сегодня, в те времена существовала традиция, согласно которой профессора Королевского института читали публичные лекции. Правда, в то время эти лекции по своему характеру были близки к сегодняшним выступлениям по телевидению и для института служили источником денежных средств, а также создавали ему паблисити.
Юнг отнесся к своей просветительской миссии весьма серьезно и, полный энтузиазма, затеял серию лекций об упругом поведении разного рода конструкций, в том числе стен и арок, которым он посвятил свои последние исследования.
Публика на этих собраниях на Албемарл-стрит была фешенебельной и, как говорят, состояла главным образом из "глупых женщин и философствующих дилетантов". Юнг отнюдь не пренебрег женской частью аудитории, заметив в своей вводной лекции:
"Значительную часть моей аудитории - и я горю желанием донести до нее эти лекции - составляют лица того пола, который, согласно традициям цивилизованного общества, в известной степени избавлен от тяжелых обязанностей, поглощающих время и внимание лиц противоположного пола. Те многие часы досуга, которыми располагают женщины высших слоев общества, можно посвятить совершенствованию ума и приобретению знаний, и это несомненно принесло бы большее удовлетворение, чем развлечения, придуманные лишь для того, чтобы немного скрасить однообразие ничем не занятого времени".
Однако фортуна не всегда благосклонна к сеятелям знаний, и можно подозревать, что некоторые из представительниц прекрасного пола все же сбежали с этих лекций, отдав предпочтение однообразию "ничем не занятого времени". Так или иначе, но Дэви, демонстрировавший на своих лекциях необыкновенно захватывающие опыты с "новой электрической жидкостью" и яркие химические эксперименты, был, как мы бы сейчас сказали, прямо-таки создан для экрана. Этот энергичный молодой человек имел к тому же весьма привлекательную внешность, так что молодые дамы стекались на его лекции по причинам, которые нельзя назвать вполне академическими, Одна из них, говорят, заметила, что "эти глаза созданы не только для того, чтобы сосредоточенно разглядывать пробирки". В итоге кассовый успех лекций Дэви превзошел все ожидания, и администрация резюмировала: "Хотя д-р Юнг, чьи глубокие познания в предмете, который он предложил своим слушателям, не вызывают сомнений, читал свои лекции той же аудитории, что и Дэви, число его слушателей уменьшалось раз от раза, чего нельзя объяснить ничем иным, кроме слишком сухой и назидательной манеры изложения".
Провал такого рода не много бы значил, вызови работа Юнга интерес и поддержку инженеров-практиков. Однако вождем и даже кумиром тогдашних инженеров был Томас Телфорд (1757-1834), взгляды которого, как мы уже упоминали, отличались прагматичностью и отвергали теорию. Все это способствовало тому, чтобы Юнг почти немедленно отказался от кафедры и вернулся к медицинской практике[59].