Выбрать главу

Протягом 1970-х років я переважно вивчав чорні діри, але в 1981-му в мене знову прокинувся інтерес до народження та загибелі Всесвіту, коли я відвідав конференцію з космології, що організували єзуїти у Ватикані. Католицька церква зробила велику помилку з Ґалілео, коли спробувала встановити закон з наукового питання, проголошуючи, що Сонце обертається навколо Землі. Тепер, століттями пізніше, вона вирішила запросити експертів, щоб порадитися з приводу космології. В кінці конференції учасники мали аудієнцію з Папою. Він сказав нам, що цілком прийнятно займатися вивченням розвитку Всесвіту після Великого вибуху, але ми не повинні розглядати сам Великий вибух, бо це момент Творення, і тому це справа Бога. Я був радий, що він не знав про тему мого виступу на конференції: можливість того, що простір-час скінченний, але не має меж, а це означає, що він не має ні початку, ні моменту Творення. Мені не хотілося повторити долю Ґалілео, з яким в мене сильне почуття спорідненості, зокрема через такий збіг, що я народився рівно через 300 років після його смерті!

Щоб пояснити ідеї, які я та інші мали стосовно того, як квантова механіка може вплинути на народження та загибель Всесвіту, потрібно спочатку зрозуміти загальноприйняту історію Всесвіту, відповідно до так званої «моделі гарячого Великого вибуху». Це вимагає, щоб Всесвіт назад у часі аж до Великого вибуху описувала якась модель Фрідмана. В таких моделях ми виявляємо, що Всесвіт розширюється, і будь-яка матерія або проміння в ньому холоднішає. (Коли розмір Всесвіту подвоюється, температура падає наполовину). А що температура — це просто міра середньої енергії, або швидкості, частинок, таке охолодження Всесвіту матиме великий вплив на матерію в ньому. За дуже великих температур частинки довкола будуть рухатися так швидко, що вони можуть уникати будь-якого притягання назустріч одна одній, викликаного ядерними або електромагнетними силами, але, коли вони охолоджуються, можна очікувати, що частинки, які притягуються одна до одної, почнуть групуватися разом. Ба більше, навіть типи частинок, що існують у Всесвіті, залежатимуть від температури. За досить високих температур частинки мають таку велику енергію, що коли вони зіштовхуються, створюється багато різних пар частинка-античастинка, й хоча деякі з цих частинок анігілюють, зіткнувшись з античастинками, вони утворюватимуться швидше, ніж щезатимуть. Однак при нижчих температурах частинки, що стикаються, мають набагато меншу енергію, тож пари частинка-античастинка будуть утворюватися повільніше, й анігіляція буде швидша за утворення.

Вважають, що в сам Великий вибух Всесвіт мав нульовий розмір, і тому був нескінченно гарячий. Але в міру того, як він розширювався, температура проміння зменшувалася. Через одну секунду після Великого вибуху, вона вже впала десь до десяти мільярдів градусів. Це приблизно в тисячу разів більше, ніж температура в центрі Сонця, але такі температури досягаються при вибухах водневих бомб. У цей момент Всесвіт складався переважно з фотонів, електронів і нейтрино (надзвичайно легких частинок, на які впливають лише слабка сила і гравітація) і їхніх античастинок, а також деякої кількості протонів і нейтронів. В міру того як Всесвіт продовжував розширюватися, а температура — падати, швидкість, з якою утворювалися у зіткненнях пари електрон-антиелектрон, стала нижчою за швидкість їх знищення через анігіляцію. Тож більшість електронів та антиелектронів мали анігілювати, утворюючи багато фотонів, і залишитися при цьому лише небагато електронів. Нейтрино та антинейтрино, однак, не анігілювали б, бо ці частинки взаємодіють між собою і з іншими частинками дуже слабко. Тож вони мають ще бути й у наші часи. Якщо б ми могли їх спостерегти, це була б хороша перевірка для такої картини дуже гарячої ранньої стадії Всесвіту. На жаль, їхня енергія сьогодні буде занизька, щоб ми могли їх побачити безпосередньо. Однак, якщо нейтрино не безмасові, а мають невеличку власну масу, як підказують деякі недавні експерименти, ми могли б виявити їх опосередковано: вони можуть бути формою «темної матерії», схожої на згадану раніше, з достатнім гравітаційним притяганням, щоб зупинити розширення Всесвіту і примусити його знову стискатися.

Приблизно через сто секунд після Великого вибуху температура впала до одного мільярда градусів, температури всередині найгарячіших зір. За такої температури протони та нейтрони більше не матимуть достатньо енергії, щоб подолати притягання сильної ядерної сили, і почнуть об’єднуватися разом, утворюючи ядра атомів дейтерію (важкого водню), що складається з одного протона і одного нейтрона. Потім ці ядра дейтерію об’єднаються з іншими протонами і нейтронами, утворюючи ядра гелію, що складаються з двох протонів і двох нейтронів, а також невелику кількість важчих елементів, літію і берилію. Можна порахувати, що відповідно до моделі гарячого Великого вибуху приблизно чверть протонів і нейтронів має перетворитися в ядра гелію, і невелику кількість важкого водню та інших елементів. Решта нейтронів мають розпастися на протони, ядра звичайних атомів водню.

Цю картину гарячої ранньої стадії Всесвіту вперше запропонував науковець Георгій Гамов у відомій статті, яку написав 1948 року разом зі своїм аспірантом, Ралфом Альфером (Алфером). Гамов мав добре почуття гумору — він умовив науковця-ядерника Ганса Бете додати його ім’я до статті, щоб список авторів виглядав, як «Альфер, Бете, Гамов», схожий на перші три літери грецької абетки, альфа, бета, гама: дуже пасував до статті про початок Всесвіту![24] В цій статті вони зробили видатне передбачення, що проміння (у вигляді фотонів) з дуже гарячих ранніх стадій Всесвіту все ще буде наявне сьогодні, але його температура впаде до лише декількох градусів вище від абсолютного нуля (-273ºC). Це те проміння, яке знайшли Пенціяс та Вілсон в 1965 році. Коли Альфер, Бете і Гамов написали свою статтю, було ще мало відомо про ядерні реакції протонів і нейтронів. Тому передбачення, зроблені для пропорцій різних елементів у ранньому Всесвіті, були досить неточні, але ці розрахунки повторено пізніше, у світлі нових даних, і тепер вони добре збігаються з тим, що ми спостерігаємо. Дуже важко, крім того, пояснити іншими причинами, чому у Всесвіті має бути так багато гелію. Тож ми досить впевнені, що маємо правильну картину, принаймні від першої секунди після Великого вибуху.

Лише через декілька годин після Великого вибуху утворення гелію та інших елементів припинилось. І після цього, протягом приблизно мільйона років Всесвіт просто розширювався без будь-яких інших значних подій. Згодом, коли температура впала до декількох тисяч градусів і електрони та ядра більше не мали достатньо енергії, щоб долати електромагнетне притягання між ними, вони почали об’єднуватися, створюючи атоми. Всесвіт як ціле продовжував розширюватися і охолоджуватися, але в областях з дещо більшою, ніж у середньому, густиною розширення сповільнилося через додаткове гравітаційне притягання. Це зрештою зупинило розширення в деяких областях і примусило їх почати стискатися знову. При стисканні під гравітаційним впливом зовнішньої до цих областей матерії могло початися їх повільне обертання. Коли область, що стискається, стає меншою, вона починає обертатися швидше, так само як фігуристи на льоду починають обертатися швидше, коли притискають руки. Зрештою, коли область стає досить малою, вона буде обертатися досить швидко, щоб врівноважувати притягання гравітації. Так народилися дископодібні обертові галактики. Інші області, що не почали обертатися, стали об’єктами овальної форми, так званими еліптичними галактиками. Така область перестане стискатися, бо окремі частини галактики будуть обертатися стабільно навколо своїх центрів, але сама галактика обертатися не буде.

вернуться

24

Ралф Альфер (Алфер) — американський космолог, докторант Георгія Гамова. 1948 року здобув докторський ступінь з фізики за теорію нуклеосинтезу. В дисертації розглянув питання, що стало відомим як нуклеосинтез Великого вибуху (теорія Альфера — Бете — Гамова; альфа — бета — гама). Термін «Великий вибух» придумав, спочатку глузуючи, Фред Гойл на радіо Бі-Бі-Сі 1950 року для опису космологічної моделі Всесвіту, як розширення до свого нинішнього стану від початкового стану величезної густини і температури. Нуклеосинтез — пояснення того, як складніші елементи створюються з простих елементів після Великого вибуху. Початково теорія Альфера — Гамова пропонувала, що всі атомні ядра створюються шляхом послідовного захоплення нейтронів. Однак подальше дослідження піддало сумніву універсальність теорії послідовного захоплення, бо жодного елемента не знайдено як стабільного ізотопу з атомною масою п'ять або вісім, що перешкоджало виробництву елементів важчих за гелій. Дисертація викликала величезний інтерес, зокрема медій. Пізніше в тому ж році, співпрацюючи в Лабораторії прикладної фізики Університету Джона Гопкінса з іншим американським науковцем Робертом Германом, Альфер передбачив температуру залишкового проміння (відомого як космічне фонове проміння, або реліктове), виходячи з припущення про Великий вибух. Проте прогнози Альфера стосовно космічного фонового проміння більш-менш забули, і їх знову відкрили Роберт Діке і Яков Зельдовіч на початку 1960-х. Попри те, що його ім'я з'являється в дисертації, Ганс Бете практично не брав ніякої участі в розвитку теорії, хоча згодом він працював з суміжних темах; Гамов додав його ім'я, щоб оригінальним зробити заголовок роботи. Так самостійна дисертація Альфера була вперше опублікована 1 квітня 1948 року в «Фізікал рев’ю» («Physical Review») і з трьома авторами. Гумор Гамова, мабуть, деколи затьмарював вирішальну роль Альфера в розвитку теорії. Інші науковці, які читали працю, можливо, припускали (помилково), що Гамов і Бете були головні автори. Дві експериментальні праці, пов’язані з космічним фоновим промінням визнано гідними Нобелівської премії: в 1978 році — Арно Пенціяса і Роберта Вілсона, і в 2006 році — Джона Мазера і Джорджа Смута. — Прим. ред.