Но почему эта сложность обязательно должна возникать? Не существует ли другого способа сделать «идеальную» карту? Нет, не существует. Сложность в том, что мы проецируем сферическую поверхность земли на плоскую карту, а при этом нельзя добиться идеальности. Вы можете проверить, что дело именно в этом, вообразив, будто вы отодрали бумагу, которой обклеен глобус (рис. ниже) и на которой изображена карта, и попытались как-то наклеить ее на ровную поверхность, не вытягивая карту и не делая на ней складок (что изменило бы масштаб). У вас это не получится, и именно по той причине, по которой возникали искажения, портившие карту хана.
Существует множество способов составления карт мира, и во всех них используются разные варианты переноса тех или иных деталей земной поверхности на карту. Например, вы можете поставить условие, чтобы площади объектов на карте были пропорциональны соответствующим площадям на земле. Это один способ. Или вы зададитесь целью сделать так, чтобы форма объектов на карте была такой же, как на земле. Но вам не удастся сделать так, чтобы и площади объектов были пропорциональны, и их очертания были подобны.
В этом смысле составление карт открывает нам нечто очень важное о местности, карту которой мы составляем: не только расположение объектов, но и кривизну «подложки» — собственно, Земли. Невозможность отобразить на плоской карте земную поверхность в едином масштабе говорит о том, что поверхность искривленная. Человечеству потребовалось довольно много времени, чтобы преодолеть интуитивное представление о том, что Земля плоская. Мы пришли к тому же выводу путем тщательного анализа и логических рассуждений. Какие еще скрытые структуры и кривизны могли бы мы обнаружить в нашем мире?
Процесс составления карты сферической поверхности по методу хана. При движении на север реальные расстояния при отображении на плоской карте растягиваются.
Продолжим совершенствовать наш инструментарий. Если мы не можем составить карту территории, как хотели бы, то есть выдерживая постоянный масштаб, так не можем ли мы пожелать, чтобы измерения были проведены с нужной нам точностью? Да, можем, хотя это потребует дополнительной работы и смекалки. Нам на помощь придет вот какое обстоятельство: если мы рассмотрим первый маленький кусочек территории — скажем, тот, который был исследован несколькими соседними всадниками, — то наша карта с фиксированным масштабом будет чрезвычайно точной. Отклонения в масштабе проявятся, только когда мы будем сравнивать между собой отдаленные участки нашей карты.
Из этого следует, что можно учесть изменения в масштабе, разбив территорию на маленькие области. При движении с севера на юг и с запада на восток при переходе от одного фрагмента карты к другому масштаб может меняться, но внутри фрагмента он будет фактически постоянным — причем чем фрагмент меньше, тем с большей точностью это будет выполняться. Теперь вообразим кривую, представляющую собой возможный путь по территории от одной точки на карте к другой (рис. выше). Мы бы хотели узнать реальную физическую длину этого пути, и мы уже знаем, что из-за вариаций масштаба ее невозможно получить, просто умножив длину кривой на масштаб. Однако мы можем разбить путь на маленькие отрезки — будем продвигаться постепенно — шаг за шагом. Теперь нам надо измерить длину каждого отрезка как в горизонтальном, так и в вертикальном направлении (рис. ниже). По этим отрезкам на карте мы уже сможем определить соответствующие им реальные расстояния, используя почти постоянные масштабы в направлении север-юг и запад-восток. Из этих двух реальных физических расстояний можно получить реальную длину пути, соответствующего этому маленькому сегменту, который представляет собой гипотенузу треугольника[21]. Суммируя длины всех этих сегментов, мы получаем полную реальную длину выбранного пути между двумя точками[22].
Движение по пути бесконечно малыми шагами.
Такой метод можно использовать для вычисления точных расстояний (о чем и мечтал хан), только он гораздо более сложный. (Фактически именно это проделывают современные программы по обработке карт, когда вы запрашиваете расстояние между двумя пунктами при езде на автомобиле.) Мы также видим, что сферическая геометрия земного шара для тех, кто интересуется только ближайшей к себе окрестностью, скрыта от глаз: картина мира вокруг них всегда локально плоская — и масштаб не меняется. Но когда приходится состыковывать эти локальные фрагменты друг с другом, необходимость изменения масштабов обнаруживает геометрию всего нашего мира как целого.
21
Напоминаем на случай, если вы запамятовали, что длина гипотенузы c связана с длинами катетов а и b соотношением c2 = a2 + b2.
22
Этот инструмент — масштаб, который варьируется от места к месту и с помощью которого некоторые расстояния на карте (или расстояния, измеренные по