С другой точки зрения, данный путь в целом «отбирается» природой из всех возможных путей, поскольку на нем достигается минимум или максимум (экстремум) суммарной величины L. Этот метод, у которого есть и другие приложения, часто называют принципом наименьшего действия (хотя, как мы вскоре увидим, это название слегка сбивает с толку, поскольку иногда это на самом деле принцип наибольшего действия). Данный метод и метод сил и скоростей приводят в точности к одним и тем же результатам. Замечательно!
Но как быть с частицей, на которую не действует никакая сила? Мы вместе с Галилеем видели, что она должна двигаться по прямой, а это значит, что ее скорость не должна меняться. Но мы также можем идентифицировать прямой путь как путь, при котором расстояние в пространстве минимально. Для расчета пространственного расстояния мы разбиваем путь на маленькие кусочки и суммируем их физические длины. В этом смысле, если не приложены силы, суммарный лагранжиан L есть просто физическое расстояние.
Мы с вами можем предпринять еще кое-что. Для Галилея говорить только о пространстве — это нормально. Но если мы хотим следовать Эйнштейну, то должны рассматривать пространство и время совместно. Вспомним: обсуждая БАШНЮ, мы поняли, что объект, на который не действуют силы, движется по прямой в пространстве-времени. Можем ли мы определить эту траекторию с помощью минимизации (максимизации) какой-либо величины? Да, но с осторожностью — эта величина должна иметь физический смысл и быть однозначно определенной, а не чем-то вроде проходимого в пространстве расстояния или затраченного на него времени. Действительно в коане «ВЕНЕЦИАНСКИЕ СНЫ» мы видели, что и то, и другое — величины относительные, то есть зависящие от системы отсчета.
Предположим, что к нашему объекту, движущемуся в пространстве-времени, приделаны часы; если же это человек, то у него есть внутренние часы — сердце (будем называть отсчитанное им время собственным временем). Поскольку между двумя событиями в пространстве-времени объект движется по некоторому пути, часы должны зафиксировать количество прошедших между событиями секунд. Обозначим эту величину ∆T. Эта величина — факт безусловный, оспорить ее не могут даже те, кто находится в других системах отсчета, с другими ощущениями одновременности и пройденных расстояний в этих системах. Однако существует соотношение между ∆T и этими зависящими от системы отсчета расстояниями и длительностями. Эйнштейн (и Герман Минковский) показал, что для маленьких отрезков пути время ∆T, зарегистрированное внутренними часами объекта, можно выразить через пространственное расстояние ∆d и временной интервал ∆t в других системах, — почти так же, как в коане «ИДЕАЛЬНАЯ КАРТА» мы смогли рассчитать пространственное расстояние ∆d по расстояниям в направлении запад-восток и север-юг. Но здесь есть два ключевых отличия. Во-первых, мы должны превратить ∆d во временной интервал, разделив его на скорость света с. Во-вторых, мы должны этот найденный временной интервал не складывать с временным интервалом At, а вычитать из него. В результате получаем
(∆T)2 = (∆t)2 — (∆d/с)2.
Что замечательно в этом соотношении, так это то, что оно справедливо для всех систем отсчета, независимо от того, в какой из них вычисляется ∆t и ∆d. (В действительности мы можем взглянуть на это с другой точки зрения: это уравнение в каком-то смысле определяет соотношение между инерциальными системами отсчета в специальной теории относительности Эйнштейна.) Эта величина теперь может играть роль лагранжиана L или пространственного расстояния d: разделим путь, по которому может двигаться частица, на сегменты, вычислим ΔT на каждом сегменте, потом сложим их и получим T, отвечающее всему пути. Посмотрим на этот подход на примере трех различных путей в пространстве-времени (рис. ниже).
Три траектории в пространстве-времени с одним и тем же временем начала и окончания движения.
Первый — левый путь — прямой. Второй состоит из двух отрезков прямых, и посередине, в точке их пересечения, меняется скорость. Временная протяженность обоих путей одинакова и равна Δt, но в первом случае нет пройденного пространственного расстояния Δd, которое нужно было бы вычитать. Таким образом, собственное время ΔT, которое отсчитали наши наручные часы, больше для первого пути, чем для второго. Аналогично, для третьего пути, когда объект движется взад-вперед, время ΔT меньше, чем для первого пути.