Выбрать главу

Для наблюдателя, который смотрит на эту картину с края обрыва, траектория книги, так же, как и ваша, выглядит искривленной, но для вас, прыгнувшего с обрыва, она будет выглядеть прямолинейной. Так кто тут прав? Прямолинейная она или нет? Этот вопрос очень похож на вопрос о расстоянии между двумя различными событиями или о временном интервале между ними: каждый наблюдатель описывает происходящее по-своему, в зависимости от того, в какой системе отсчета он находится, — и все описания одинаково правильны. Однако есть и нечто объективное, что характеризует «расстояние» между двумя событиями, а именно — пространственно-временной интервал. Можем ли мы и в этом случае, используя свойства пространства-времени, как-то устранить противоречия в вопросе о прямолинейности пути? И если мы используем пространственно-временной подход, станет ли траектория прямолинейной?

Траектория падающей книги в двух разных системах координат.

Эйнштейн сказал «да» и еще раз «да», и в этих «да» заключен весь новый взгляд на гравитацию, пространство и время. Чтобы понять, в чем он состоит, мы должны собрать вместе три линии рассуждений, которым мы следовали до сих пор, и присовокупить к ним те несколько подсказок, которые были сделаны по пути. Давайте вспомним про эти три нити и попытаемся сплести их вместе.

Первая нить повела нас от стрелы Муненори к экспериментам с передвигаемыми холодильниками и катящимися мячами; потом мы блуждали по местности, составляя идеальную карту; затем спускались с горного перевала. В этих «путешествиях» мы увидели, что объекты обладают естественной склонностью либо оставаться неподвижными, либо двигаться по прямой с постоянной скоростью. Их поведение можно описать очень просто: как движение по прямой сквозь пространство и время. Их траектории обладают особым свойством: так же как прямая в пространстве есть кратчайшее расстояние между двумя точками, так и путь объекта сквозь пространство-время есть длиннейший путь между двумя событиями, если мы измеряем пространственно-временную длину между двумя событиями по часам, отсчитывающим время по сердечному ритму наблюдателя, движущегося по этому пути между этими событиями. Наконец, силы можно рассматривать как любое воздействие, приводящее к отклонению пути объекта от этой его естественной траектории в пространстве-времени.

Подводя итог, получаем правило: в отсутствие посторонних сил объект следует по траектории между двумя событиями, являющейся «прямой линией», определяемой как путь, на котором полное время между этими двумя событиями, измеренное по «сердечным часам» (собственное время объекта), максимально.

Мы следовали за второй нитью, которая вела нас за кораблем и гондолой. Благодаря ей мы узнали, что только что рассмотренное «естественное» движение по прямой возникает лишь в определенных системах отсчета. Система отсчета — это своего рода крупномасштабная рамка, внутри которой измеряются положение, скорости и момент времени, в какой происходит событие. Примерами систем отсчета являются комната или место, в котором вы сейчас находитесь, а также внутренность корабля, гондолы или самолета. Назовем те специальные системы отсчета, в которых объекты движутся в пространстве-времени по прямолинейным траекториям, инерциальными системами отсчета. Если задана одна инерциальная система (скажем, мост), вторая система отсчета, движущаяся с постоянной скоростью и в фиксированном направлении относительно первой системы (скажем, гондола), тоже является инерциальной, и нет никаких оснований считать одну из них особой или предпочтительной по сравнению с любой другой.

Существует специальное правило для того, чтобы с помощью описания поведения объекта в одной инерциальной системе отсчета получить его описание в другой инерциальной системе. Например, объект, покоящийся в одной инерциальной системе, если его описывать в другой инерциальной системе, будет двигаться, причем в точности по тем правилам, которые разработал и описал Галилей. Но Эйнштейн обнаружил, что из-за того, что свет имеет одну и ту же скорость во всех инерциальных системах отсчета, правило Галилея следует заменить другим. Согласно этому модифицированному правилу, временные и пространственные интервалы искажаются таким образом, что два события, разделенные некоторым интервалом времени в одной инерциальной системе, в другой инерциальной системе будут разделены другим интервалом времени. Но это преобразование не изменяет интервал времени между двумя событиями, отсчитываемого по «сердечному ритму» (то есть пространственно-временной интервал). Таким образом, все системы отсчета считают интервал времени между двумя событиями, отсчитанный по «сердечному ритму», одним и тем же. А как обстоит дело с неинерциальными системами отсчета, которые вращаются или ускоряются относительно инерциальной? В них нет ничего зловредного, но если мы станем описывать события в одной из них, то объекты в отсутствие сил уже не будут стремиться двигаться по прямолинейной траектории с постоянной скоростью. Вместо этого они будут двигаться так, как будто на них действуют «фиктивные»[30] силы, толкающие их туда-сюда. (Они похожи на фиктивные силы, что бросают вас вперед при резком торможении машины, и защищает вас от них только ремень безопасности.)

вернуться

30

Это название (фиктивные силы) обычно используется потому, что эти силы не вызваны каким-либо взаимодействием с другими объектами (как, например, при трении, контакте или магнитных силах) или любой фундаментальной силой, такой как электромагнетизм.