находим:
После сокращения получаем:
Строго говоря, это уравнение для красного смещения не должно иметь решений, поскольку при любой скорости величина смещения z оказывается отрицательной величиной:
Тем не менее, решая это уравнение, находим зависимость скорости от красного смещения:
Или в традиционной развёрнутой форме:
Странный знак минус с неясными обоснованиями следует отбросить. Из исправленного уравнения, отбрасывая величины высших порядков малости, можно получить традиционное уравнение приближенных значений скорости для z << 1
Нередко в литературе указывается, что такое приближение допустимо при красных смещениях до величины порядка z ~ 0,1 [7]. Однако такое приближение сделано "на глазок". Разумнее выяснить, как зависит погрешность вычисления скорости от красных смещений. Точное значение скорости определяется уравнением (7). Переход к приближённому уравнению связи красного смещения и скорости v = cz может быть произведён также отбрасыванием членов высшего порядка через разложение Тейлора, как это описано в [1, с.406]:
Погрешность вычисления скорости с её завышением при таком отбрасывании и значении z = 0,1 составляет 5%:
Более точно величину погрешности можно найти из следующих соображений. Пусть приближенное значение скорости отличается от точного значения на множитель k < 1, то есть:
Тогда
Преобразуем:
Уравнение позволяет вычислить, при каких z погрешность не будет превышать величину k. В частности, для k = 1 находим:
Это решение, очевидно, неприемлемо, поскольку по определению красное смещение при разбегании участников положительно. Для других значений приближения погрешность можно найти из уравнения (8). Например, погрешности для значений z = 0,01 и z = 0,1 равны:
Как видим, действительно, при значениях z < 0,1 погрешность вычисления скорости не превышает 5%. Если же z > 1, то погрешность превышает 40%:
Следует заметить, что в приведённой выше цитате уравнение (0), предшествующее уравнению (1), описано несколько двусмысленно. Не совсем понятно, относится оно к случаю, когда "источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается", либо к случаю, когда он "удаляется – длина волны увеличивается". По смыслу уравнения (0) и (1) соответствуют случаю сближения источника и приёмника. Кроме того и сами утверждения уменьшается-увеличивается также недостаточно наглядны. Поэтому рассмотрим эти изменения длины волны в более развернутом виде. На рисунке показано, что при движении световой волны мимо наблюдателя, неподвижного относительно источника, v = 0, наблюдатель за одну секунды фиксирует некоторое количество периодов этой волны:
Рис.1. Удаляющийся наблюдатель фиксирует меньшее число периодов волны
Очевидно, и не требует отдельных доказательств, что измеренная длина волны для неподвижного наблюдателя равна излученной длине волны λизл. В этом случае приёмник, наблюдатель зафиксирует количество колебаний, равное:
где
nизл – количество подсчитанных колебаний, а индекс означает принадлежность источнику.
В уравнении умноженная на 1 секунду скорость света – это путь, пройденный за 1 секунду пересчитанными колебаниями с длиной волны λизл. Если же получатель, приёмник удаляется от излучателя, что соответствует расширяющейся Вселенной, то, как видно на рисунке, за эту же секунду он насчитает меньшее количество колебаний, периодов световой волны. За эту секунду относительно наблюдателя, приёмника волна пройдёт меньший путь, поскольку приёмник переместился, двигаясь со скоростью v, поэтому наблюдатель и насчитает меньшее число nнаб периодов λ:
Все эти периоды подсчитаны за то же время – 1 секунду, что "видно" с точки зрения излучателя (источника). Действительно, наблюдая за движущимся наблюдателем, приёмником, он однозначно фиксирует, что тот пересчитал именно такое количество "периодов" волны. Из этого следует, что при световой скорости движения волны этому количеству периодов nнаб соответствует и большее значение длины волны (длины её одного периода). В самом деле, за 1 секунду мимо движущегося наблюдателя пробежало nнаб штук периодов общей длиной, равной пути, пройденному светом за это же время, 1 секунду. Следовательно, фактическая длина волны с точки зрения движущегося (да и неподвижного) наблюдателя равна: