В августе 1919 года рабочие материалы обеих групп были тщательно изучены. В итоге фотопластинки из Принсипи показали величину отклонения лучей света около 1,6 угловых секунд, из Бразилии – 1,98. Другими словами, безоговорочно была подтверждена общая теория относительности.
Через три месяца учёные презентовали одну из фотографий астрономов (ту, что в начале главы) во время выступления перед Лондонским королевским обществом, что дало начало «веку гравитации». Выступление повергло в всех присутствующих в шок: теория гравитации Ньютона, которая 200 лет была основной, стала частным случаем общей теории относительности.
Журналисты с огромным удовольствием подхватили эту новость, сопровождая её кричащими заголовками (кликбейт всегда был), наподобие этого: «Идеи Ньютона о гравитации выбросили на помойку».
Это было грубым искажением правды об открытии. Никто ничего никуда не выбрасывал! Просто ОТО показала процессы, происходящие во Вселенной, гораздо шире, чем теория гравитации Ньютона.
Последующие наблюдения за другими солнечными затмениями снова и снова подтверждали правоту ОТО. А первые же снимки, сделанные телескопом «Хаббл», выявили ещё большее искривление света под действием гравитации.
Краеугольный камень общей теории относительности и теории гравитации
Международная группа специалистов зафиксировала наиболее точное на данный момент подтверждение одного из краеугольных камней общей теории относительности – универсальность свободного падения (G. Voisin, 2020).
По большому счёту, этот принцип лежит в основе ОТО. Однако несоответствие между ОТО и квантовой механикой, а также загадка доминирования в составе Вселенной тёмных материи и энергии привели многих физиков к убеждению, что ОТО может не являться окончательной теорией гравитации.
Универсальность принципа свободного падения заключается в том, что два тела, упавшие в гравитационное поле третьего, независимо от своего состава испытывают одно и то же ускорение. Впервые это продемонстрировал Галилей. Как известно, он бросал объекты разной массы с вершины Пизанской башни, чтобы убедиться, что они оба достигают Земли одновременно.
Новое исследование показало, что этот постулат справедлив даже для сильно самогравитирующихся объектов, таких как нейтронные звёзды. Измерения были записаны совместной группой из Университета Манчестера, парижской обсерватории и Института радиоастрономии Макса Планка.
Специалисты изучили данные о трио, состоящем из двух белых карликов и пульсара. В этом трио пульсар и первый белый карлик вращаются друг вокруг друга (на расстоянии в 10 раз ближе чем Меркурий к Солнцу) и в то же время – вокруг второго белого карлика. Последний расположен на расстоянии немного дальше, чем Солнце от системы Земля – Луна.
Авторская визуализация пульсара и его ближайшего спутника – белого карлика с их орбитами и вторым спутником на заднем плане. Не в масштабе. © Guillaume Voisin CC BY-SA 4.0
Казалось бы, в подобной схеме нет ничего удивительного. Аналогично Земля с Луной вращаются вокруг Солнца. Но тут всё дело в массах объектов, и в частности пульсара «PSR J0337+1715». При диаметре всего 25 км он имеет массу в 1,44 раза больше массы Солнца. Предполагалось, что этот пульсар может больше гравитационно воздействовать на белого карлика, находящегося с ним в непосредственной близости и одной связке, чем второй белый карлик. При этом согласно данной гипотезе различалось бы воздействие и второго белого карлика на каждый из оставшихся компонентов.
Как были получены данные?
Пульсар испускает пучок радиоволн, который проносится сквозь пространство. При каждом повороте это создает вспышку радиоизлучения, которая с очень высокой точностью фиксируется радиотелескопом. Когда пульсар движется по своей орбите, время прихода света на Землю смещается, согласно определённому закону. Именно точные измерения и математическое моделирование этих пучков радиоизлучения, вплоть до наносекунды, позволили учёным делать выводы о движении звезды с исключительной точностью. В итоге был зафиксирован аналог эксперимента Галилея космических масштабов. Два тела разных состава и массы падают с одинаковым ускорением в гравитационном поле третьего.
Таким образом, универсальность свободного падения, описанная в ОТО, была подтверждена с уровнем достоверности 95 %. Она справедлива даже в присутствии объекта, масса которого в значительной степени обусловлена его собственным гравитационным полем. А это, в свою очередь, в очередной раз подтверждает и саму ОТО.