Совсем недавно, в 2014 году, астрофизики выяснили, что сверхскопление Девы, состоящее примерно из 30 000 галактик, входит в состав гораздо бóльшей структуры, которую назвали «сверхскопление Ланиакея». Но даже это ещё не всё, хотя, уверен, вы уже перестали осознавать масштабы.
Ланиакея вместе с таким же сверхскоплением Персея – Рыб входит в комплекс сверхскоплений Рыб – Кита, который одновременно является галактической нитью – составной частью крупномасштабной структуры Вселенной.
Но знаете, что самое интересное? Наблюдения, проведённые к данному моменту, указывают на то, что все эти структуры не просто хаотически разбросаны по Вселенной, а составляют сложную губкообразную структуру, в которой есть нити, узлы и пустоты (войды).
Есть ещё один факт, на который следует обратить внимание: сверхскопления – это самые крупные образования, которые удерживаются гравитацией от разбегания, несмотря на расширение Вселенной. Распределение сил здесь (очень упрощённо) такое: нити разбегаются в разные стороны под воздействием тёмной энергии. В то же время движение объектов внутри них в бóльшей степени определяется силами гравитационного притяжения. То есть окружающие нас галактики и их скопления настолько сильно связаны гравитацией, что с ними не может справиться расширение Вселенной.
Так куда всё летит? Поиском ответа на этот вопрос занялись специалисты из Еврейского университета в Иерусалиме (Yehuda Hoffman, 2017). В рамках своей работы они собирали и анализировали данные проекта Cosmicflows-2, который измерил расстояния и скорости более 8 000 близлежащих галактик.
Для начала исследователи подтвердили, что Местная группа галактик летит в сторону Великого аттрактора – гравитационной аномалии в центре Ланиакеи. Великий аттрактор, в свою очередь, со скоростью 660 км/с притягивается более массивным сверхскоплением Шепли.
Астрофизики решили копнуть глубже и сравнили скорость Местной группы с расчётной, которая выводится из массы сверхскопления Шепли. Результат вы узнаете в следующей книге. Шучу.
Оказалось, что, несмотря на массу в 10 000 масс нашей галактики (что невозможно себе представить), сверхскопление Шепли, тем не менее, не смогло бы разогнать нас до такой скорости.
Тогда специалисты решили построить карту антискоростей (векторов, которые направлены в сторону, обратную векторам скоростей). В итоге они обнаружили область, находящуюся на противоположной стороне от сверхскопления Шепли. Эта область словно отталкивает нас от себя ровно с той скоростью, чтобы в сумме дать искомые 660 км/с. Уверен, многие уже подумали о том, что речь идёт об электрическом диполе.
Трёхмерная проекция участка местной Вселенной. Слева синими линиями обозначено поле скоростей всех известных галактик ближайших сверхскоплений – они, очевидно, двигаются в сторону аттрактора Шепли. Справа красным показано поле антискоростей (обратные значения поля скоростей). Они сходятся в точке, откуда их «выталкивает» отсутствие гравитации в этой области Вселенной.
Yehuda Hoffman et al 2016
Само собой, любители всяких альтернативных теорий заговорили об антигравитации. На самом деле всё можно объяснить гораздо проще. Представьте, что из центра вас тянут в две противоположные стороны по пять человек. Если они в среднем обладают одними и теми же физическими параметрами, то вы останетесь на месте. Только будете смещаться в одну из сторон в зависимости от того, прибавилось или убавилось на ней количество тянущих людей. А если на одной из сторон число людей будет больше, чем на другой? Тогда вы сдвинетесь в ту сторону, где их общая масса больше. А теперь представьте, что с одной стороны от вас никого нет. В этом случае вы будете удаляться от пустоты так, будто она вас отталкивает.
Классический электрический диполь из учебника физики. Wikimedia commons
Карта скоростей местной Вселенной размером примерно 2 млрд. световых лет. Желтая стрелка по центру выходит из Местной группы галактик и указывает скорость ее движения примерно в направлении аттрактора Шепли, и точно в противоположную сторону от репеллера (обозначен желтым и серым контуром в правой и верхней области). Yehuda Hoffman et al., 2016