Выбрать главу

Итак, в соответствии с некоторыми моделями сначала рождается обычная нейтронная звезда, а после того как вещество в ее недрах совершит переход в кварковое состояние, она эволюционирует в кварковую звезду. Впрочем, полной ясности в этих вопросах нет.

Разумеется, обнаружить нейтронную звезду путем оптических наблюдений невозможно. Ядерные реакции внутри них не идут, поэтому излучение тоже отсутствует. Кроме того, площадь поверхности нейтронной звезды настолько мала, что ее видимый блеск будет иметь совершенно ничтожную величину. Но если она входит в двойную систему, то характер движения обычной звезды может выдать присутствие соседки-невидимки. Однако открытие пришло, как это часто бывает, совсем с другой, неожиданной стороны. Во второй половине прошлого века удалось зарегистрировать мощные источники радиоизлучения, интенсивность которого периодически менялась со временем. В 1967 году Джоселин Белл, аспирантка английского радиоастронома Энтони Хьюиша, случайно обнаружила совершенно необычный радиоисточник, который излучал в импульсном режиме строго периодически – каждые 1,33 секунды. Через короткое время нашли еще три источника с такими же короткими интервалами. Когда версия об искусственном происхождении сигналов отпала (поначалу заговорили о внеземных цивилизациях и даже возникла небольшая паника), остался единственный вариант – естественное происхождение радиоимпульсов. Загадочные радиоисточники получили название пульсаров и довольно скоро были отождествлены с быстро вращающимися нейтронными звездами.

Если взять звезду с параметрами нашего Солнца (диаметр около 1,4 миллиона километров и период обращения вокруг оси 25 суток) и спрессовать ее вещество в объеме с радиусом около 10 километров, то экваториальная скорость при условии сохранения массы чудовищно увеличится – примерно в 100 тысяч раз. А период вращения в миллиарды раз уменьшится и составит тысячные доли секунды. Правда, пульсар, найденный Белл, имел период заметно больший, но все равно это очень маленькая величина, совершенно нетипичная для небесных тел. Между прочим, пульсар в Крабовидной туманности совершает 30 оборотов в секунду, что уже весьма близко к расчетной величине, а пульсар в созвездии Лисички имеет период 0,00155 секунды. Понятно, что столь быстро вращаться могут только такие тела, линейные размеры которых измеряются десятками километров. А если это так, то перед нами не что иное, как нейтронные звезды.

С рекордно коротким периодом импульсов мы разобрались. Осталось выяснить, откуда берется столь мощное радиоизлучение. Верхний слой нейтронной звезды представляет собой плазму, пронизанную мощным магнитным полем. Заряженные частицы двигаются вдоль силовых линий и в конце концов оказываются в области магнитных полюсов, откуда выбрасываются узконаправленные пучки частиц с высокой энергией – так называемые джеты (от английского jet – «струя»). Стремительное вращение звезды придает вылетающим частицам дополнительную энергию. Из расчетов следует, что сжатие звезды приводит к увеличению ее магнитного поля, поэтому, зная его среднее значение у обычных звезд, можно вычислить, каким оно окажется у нейтронной звезды. Магнитное поле вырастет в 1012раз и составит колоссальную величину 108– 109тесла. Ну а поскольку магнитный полюс не обязан лежать на оси вращения (географический полюс Земли тоже не совпадает с магнитным) джет будет описывать конус. Мы увидим пульсар в тот момент, когда он «смотрит» прямо на Землю. В следующее мгновение он «отвернулся», а затем цикл повторяется вновь.

Впоследствии кроме радиопульсаров были обнаружены рентгеновские пульсары, а также источники мощного потока гамма-излучения (МПГ-источники) с той же самой строгой периодичностью. Рентгеновские пульсары являются компонентами тесных двойных систем. Вещество звезды-соседки перетекает на его поверхность под действием сил гравитации (это явление называется аккрецией), откуда и черпают энергию вылетающие фотоны. Однако излучать в рентгеновском диапазоне могут и одиночные нейтронные звезды. Совсем недавно, в 90-х годах прошлого века, были обнаружены семь радиотихих нейтронных звезд с экстремально большим отношением рентгеновского потока к оптическому. Сначала предположили, что во всем виноват механизм аккреции: хотя у одинокой нейтронной звезды нет собрата, она может захватывать межзвездный газ, в результате чего ее поверхность разогревается до миллиона градусов и начинает излучать в рентгеновском диапазоне. Однако по ряду причин эта гипотеза не подтвердилась. Нейтронные звезды рождаются очень горячими (температура поверхности составляет порядка миллиарда градусов), а затем постепенно остывают, но даже через сотни тысяч лет после рождения ее температура может превышать миллион градусов. Поэтому, вероятнее всего, мы видим семерку молодых и горячих нейтронных звезд. Все они расположены сравнительно недалеко от Земли (примерно 120 парсек), из чего можно заключить, что Солнечная система в настоящее время проходит через область недавнего звездообразования (так называемый пояс Гулда).

Итак, на закате своей жизни звезда сбрасывает газовую оболочку, а ее ядро начинает стремительно сжиматься. Если его масса была меньше 1,4 массы Солнца, гравитационный коллапс остановится на стадии белого карлика. Если масса ядра находится в пределах 1,4–3,0 солнечной массы, оно сколлапсирует в нейтронную звезду. Если же ядро еще массивнее (более трех масс Солнца), возникнет провал в неведомое – загадочный объект под названием «черная дыра». Критическую величину в 1,4 массы Солнца принято называть пределом Чандрасекара, по имени индийского физика-теоретика, рассчитавшего этот параметр.

Под черной дырой следует понимать область пространства-времени, полностью закрытую для внешнего наблюдателя. Из-под гравитационной крышки, навсегда прихлопнувшей раздавленную звезду, не может выбраться наружу ни один сигнал, в том числе и луч света. Путь внутрь черной дыры – дорога в один конец: любой предмет, провалившийся в ее непостижимую пучину, исчезает бесследно. Поэтому черная дыра – очень меткий термин, отражающий самую суть этого невразумительного объекта. Вечное упокоение световых квантов на дне гравитационной могилы объясняется сравнительно просто. Чем массивнее тело, тем больше энергии надо затратить, чтобы оторваться от его поверхности. Чтобы разорвать путы земного притяжения (сойти с околоземной орбиты), космический корабль должен развить скорость 11,2 километра в секунду. Эта величина называется второй космической скоростью, или скоростью убегания. На поверхности Солнца она составит 700 километров в секунду, а вот скорость убегания для черной дыры равна скорости света, поэтому покинуть ее нутро не может ничто.

Неподготовленному читателю может показаться странным, что не такой уж безумно тяжелый объект (свыше трех солнечных масс) навсегда останавливает световые лучи. Почему в таком случае массивные звезды запросто излучают свет? Однако дело тут не столько в массе как таковой, а в том объеме, в который эта масса помещена. Если бы мы стали сжимать Землю, бережно сохраняя ее полную массу, то увидели бы, что вторая космическая скорость неуклонно растет, хотя масса планеты не меняется. Когда радиус Земли уменьшится до 9 мм, а плотность ее вещества вырастет до 1027г/см3(на 13 порядков больше плотности атомного ядра), скорость убегания на ее поверхности сравняется со скоростью света. После этого пресс можно спокойно отложить в сторону. Согласно общей теории относительности, Земля с этого момента начнет неудержимо коллапсировать самостоятельно, пока на ее месте не образуется микроскопическая черная дыра.

полную версию книги