После Гиппарха и Птолемея в астрономических науках наступил застой. Стагнация продолжалась свыше полутора тысяч лет, вплоть до начала XVI века, когда польский священник Николай Коперник предложил новую модель мироздания с неподвижным Солнцем в центре, получившую название гелиоцентрической. Согласно этой модели, планеты вращались вокруг Солнца по правильным окружностям, а их число уменьшилось до шести (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн). Луна же, строго говоря, потеряла статус полноценной планеты и превратилась в естественный спутник Земли. Хотя модель Коперника была значительно проще птолемеевой и давала несколько лучшие результаты, ее на протяжении почти 100 лет серьезно не воспринимали. Перелом произошел в XVII веке, когда сначала итальянский астроном Галилео Галилей сумел разглядеть в телескоп (который он же сам и изобрел в 1608 году) спутники Юпитера, а вслед за ним великий Иоганн Кеплер внес поправки в схему Коперника. Проанализировав блестящие наблюдения Марса, выполненные его учителем, датским астрономом Тихо Браге, Кеплер пришел к выводу, что единственная геометрическая фигура, которая идеально отвечает этим наблюдениям, – эллипс. Итак, в модифицированной модели Коперника планеты стали обращаться вокруг Солнца по эллиптическим орбитам, а Солнце переместилось в один из фокусов этого эллипса.
Более того, Кеплер обнаружил, что между средними расстояниями планет от Солнца и периодами их обращения существует простое математическое соотношение. Таким образом, стало возможным вычислить относительное расстояние между Солнцем и любой из планет. К сожалению, это мало что давало, потому что у схемы, предложенной Кеплером (вполне надежной и замечательно согласующейся с наблюдениями), напрочь отсутствовал масштаб. Можно было сказать, что, скажем, Сатурн расположен от Солнца в 10 раз дальше Земли, но чему равно это расстояние в километрах – тайна, покрытая мраком. А вот если бы удалось каким-то способом вычислить расстояние между Землей и любой из планет, у астрономов сразу бы появился в руках необходимый масштаб. Дело было за малым – придумать такой способ.
Для определения расстояний между небесными телами используют явление параллакса. Параллакс – очень простая штука. Если рассматривать свой собственный палец на фоне пестрых обоев правым и левым глазом поочередно, легко убедиться, что в тот момент, когда вы закрываете один глаз и открываете другой, палец смещается на некоторое расстояние относительно фона. Чем ближе расположен к глазам палец, тем больше будет это смещение. Суть явления лежит на поверхности: поскольку глаза разнесены на некоторое расстояние друг от друга, вы смотрите на предмет каждым глазом под определенным углом.
Тот же самый подход без труда применим и к небесным телам. Разумеется, поочередно моргать глазами, глядя, скажем, на Луну, совершенно бессмысленно, поскольку она расположена слишком далеко. А вот если два астронома, разделенные расстоянием в несколько сотен километров, будут одновременно наблюдать наш естественный спутник на фоне звездного неба, лунный параллакс легко обнаружится. Нужно только договориться, относительно какой звезды будут вестись наблюдения, и тогда первый астроном увидит край лунного диска на одном угловом расстоянии от заранее выбранной звезды, а второй, соответственно, – на ином. Дальше – уже дело техники: если известны смещение Луны относительно звездного фона и расстояние между обсерваториями, то с помощью несложных тригонометрических функций можно рассчитать расстояние до Луны.
В ходе таких наблюдений было установлено, что величина лунного параллакса составляет 57 минут дуги, или около 1 градуса дуги (полная окружность насчитывает 360 градусов; в одном градусе содержится 60 минут, а в минуте – 60 секунд). Смещение в 57 минут дуги измерить очень легко, так как оно равняется примерно двум видимым диаметрам полной Луны. Расстояние, вычисленное с помощью параллакса, показало хорошее совпадение с цифрами, полученными старым проверенным методом – по земной тени во время лунного затмения.
А вот с планетами вышла неувязка. Беда в том, что они расположены слишком далеко, поэтому параллактическое смещение столь незначительно, что его не удавалось измерить вплоть до начала XVII столетия. Задача была успешно решена после изобретения телескопа в 1608 году. Во второй половине XVII века два французских астронома, Жан Рише и Джованни Кассини (итальянец по происхождению), вычислили параллактическим методом расстояние от Земли до Марса. Наблюдения проводились одновременно в Париже и Французской Гвиане. Модель Кеплера получила наконец вожделенный масштаб, после чего можно было без труда рассчитать все остальные расстояния внутри Солнечной системы. В частности, Кассини определил, что расстояние от Земли до Солнца составляет 140 миллионов километров. Для XVII века это очень неплохая точность, так как он ошибся всего на 10 миллионов километров. Техника не стояла на месте, и в первой половине XVIII века результат Кассини был подправлен до 152 миллионов километров (современное значение – 149,6 миллиона километров). Эту величину впоследствии назвали астрономической единицей (а. е.) и стали широко применять в качестве своего рода межпланетной версты.