Следует сказать несколько слов о плоской диаграмме «спектр – светимость» (или «температура – светимость»), потому что астрономы широко ею пользуются. Поскольку впервые диаграммы такого типа стали применять датчанин Э. Герцшпрунг и американец Г. Н. Рассел, их обычно называют диаграммами Герцшпрунга – Рассела. На горизонтальной оси этой диаграммы слева направо отложены спектральные классы от О до М, то есть в порядке убывания температуры. На вертикальной оси снизу вверх располагаются светимости, или абсолютные звездные величины, по мере их возрастания. Независимо друг от друга Герцшпрунг и Рассел обнаружили эмпирическую связь между температурой и светимостью. Как правило, звезда тем ярче, чем она горячее, хотя, конечно, бывают и исключения (вспомните красные сверхгиганты). Но в среднем эта закономерность работает совсем неплохо. Поэтому чем левее лежит спектральный класс исследуемой звезды на горизонтальной оси (следовательно, чем больше ее температура), тем выше она взбирается по вертикальной шкале абсолютных звездных величин (светимости).
Таким образом, большинство звезд расположились по диагонали в виде широкой полосы, идущей от верхнего левого угла диаграммы, где лежали горячие и яркие звезды, к нижнему правому углу, населенному холодными и тусклыми красными карликами. Эту широкую диагональную ленту назвали главной последовательностью.
Звезды, лежащие на главной последовательности, располагаются не абы как, но подчиняются определенным правилам. Сразу же выявилась взаимосвязь между температурой звезды и ее радиусом, поскольку оказалось, что звезда с определенной температурой поверхности не может быть сколь угодно большой, а значит, и ее светимость тоже укладывается в некие фиксированные параметры. Кроме того, светимость связана с массой звезды. Если идти вдоль главной последовательности от спектральных классов О – В до К – М, то массы звезд непрерывно уменьшаются. Скажем, у звезд класса О массы достигают нескольких десятков солнечной, тогда как у звезд класса В они не превышают 10 масс Солнца. Наше Солнце, как известно, имеет спектральный класс G2, поэтому оно будет находиться почти в середине главной последовательности, немного ближе к ее правому нижнему краю. У звезд более поздних классов массы заметно меньше солнечной; например, красные карлики спектрального класса M легче Солнца в 10 раз. Физическую причину всех этих закономерностей удалось понять только после создания теории термоядерных реакций.
Однако на главную последовательность попадает далеко не все звездное население. Красные гиганты и сверхгиганты (их традиционно принято называть красными, хотя среди них есть и желтые звезды) образуют отдельную ветвь, которая широкой полосой растет от середины главной последовательности и уходит в правый верхний угол диаграммы. Нам уже хорошо знакомы эти звезды с огромной светимостью и низкой температурой поверхности. На фоне основной массы звездного населения гигантов сравнительно немного. А в нижнем левом углу диаграммы разместились белые карлики – горячие звезды с низкой светимостью, что говорит об их очень малых размерах. Забегая немного вперед, скажем, что белые карлики представляют собой закономерный финальный этап эволюции некоторых звезд. Термоядерные реакции в их недрах давно уже не идут, и они медленно остывают. Итак, напрашивается вывод, что и красные гиганты, и белые карлики – это своего рода производственные отходы, определенная стадия эволюции звезд, покинувших главную последовательность. А поскольку вопросы жизни и смерти – одни из наиболее животрепещущих, настало время поближе познакомиться с рождением и эволюцией звезд.
По современным представлениям, звезды рождаются внутри газово-пылевых облаков, которые начинают сжиматься под действием собственных гравитационных сил. Межзвездная среда только на первый взгляд кажется ничем не заполненным пустым пространством, а в действительности она содержит значительные количества газа и пыли, которые распределяются весьма неравномерно. Больше всего газа и пыли концентрируется в галактических спиральных рукавах, и здесь же обнаруживаются так называемые ассоциации молодых звезд, что является дополнительным аргументом в пользу их рождения из газово-пылевых облаков. Помимо молекулярного водорода и атомарного гелия, такие облака содержат мелкие частицы космической пыли, сложенные более тяжелыми элементами. И хотя никому еще не удалось от начала до конца проследить все фазы формирования звезды, в самом общем виде этот процесс можно представить следующим образом.