Исследования сверхновых звёзд, вспыхнувших в нашей Галактике, затрудняются тем, что эти небесные объекты чрезвычайно редко доступны наблюдениям в видимом диапазоне из-за поглощения света в межзвёздном пространстве. За всю историю науки их удалось увидеть всего несколько раз. Однако регулярные наблюдения большого количества других галактик приводят к ежегодному обнаружению нескольких сотен сверхновых.
Установлено, что в среднем в каждой галактике вспышка сверхновой происходит раз в несколько десятилетий. Причём в максимуме своего блеска она может быть столь же яркой, как десятки, даже сотни миллиардов звёзд галактики вместе взятых. Самые далёкие из известных ныне сверхновых находятся в галактиках, расположенных в сотнях мегапарсек от Солнца.
В 1930-х гг. Вальтер Бааде и Фриц Цвики предположили, что в результате взрыва сверхновой может образоваться сверхплотная нейтронная звезда. Эта гипотеза подтвердилась после открытия пульсара — быстровращающейся нейтронной звезды с периодом 33 миллисекунды — в центре известной Крабовидной туманности в созвездии Тельца; пульсар возник на месте вспышки сверхновой в 1054 г. Никаких нейтронных звёзд на месте новых звёзд не возникает.
Гибель звёзд
Звёзды живут долго, но не вечно. Рано или поздно термоядерное топливо заканчивается, и выделение энергии уже не способно противодействовать гравитации, стремящейся как можно сильнее сжать звезду. Наступает момент её перехода в новое состояние: в зависимости от массы она становится белым карликом, нейтронной звездой или чёрной дырой. Белые карлики, нейтронные звёзды и чёрные дыры — это своеобразное «кладбище материи», которая отжила свой термоядерный век и навсегда исключена из галактического кругооборота вещества.
В настоящее время известно около 10 тыс. белых карликов. Разумеется, все они расположены в ближайших окрестностях Солнца — на больших расстояниях столь тусклые объекты мы наблюдать не можем. Что же представляет собой белый карлик?
В обычном состоянии звезды гравитации противостоит давление горячего газа, разогретого до сверхвысоких температур термоядерными реакциями. В белом карлике термоядерные реакции уже не идут, и потому обычным газовым давлением гравитационное сжатие не остановить.
Однако в чрезвычайно плотном веществе белых карликов (в недрах этих объектов плотность может достигать величин порядка 1010кг/м3) начинают действовать иные физические законы: при такой плотной «упаковке» атомов в недрах белых карликов давление электронов не спадает даже при очень низких температурах. Это давление электронного газа удерживает белые карлики в состоянии равновесия, не давая им сжаться ещё сильнее, но только при условии, что масса звезды не превышает 1,4 массы Солнца.
Если же масса звезды превышает это критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтральные частицы — нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов, которые настолько тесно прижаты друг к другу, что огромная звёздная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливается. Плотность этого шара — нейтронной звезды — чудовищно велика даже по сравнению с плотностью белых карликов: она может превышать 10 млн. т/см3.
Что произойдёт, если масса звезды настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса? Ещё в XVIII в. учёные высказывали предположения о возможности существования во Вселенной тел с огромной силой тяготения, которые притягивают даже испущенный ими самими свет. После создания Эйнштейном общей теории относительности было построено подробное описание таких объектов, названных чёрными дырами.