Обычные солнечные телескопы предназначены в основном для наблюдения фотосферы. Чтобы наблюдать самые внешние и сильно разреженные слои солнечной атмосферы — солнечную корону, пользуются специальным инструментом — коронографом. Изобрёл его французский астроном Бернар Лио в 1930 г.
В обычных условиях солнечную корону увидеть нельзя, так как свет от неё в 10 тыс. раз слабее света дневного неба вблизи Солнца. Л/Южно воспользоваться моментами полных солнечных затмений, когда диск Солнца закрыт Луной. Но затмения бывают редко, видны в узкой полосе, а продолжительность полной фазы затмения не превышает 7 мин. Коронограф же позволяет наблюдать корону вне затмения, а чтобы удалить свет от солнечного диска, в фокусе объектива коронографа установлена искусственная «луна».
Коронографы обычно устанавливают высоко в горах, где воздух прозрачнее и небо темнее. Но и там солнечная корона всё же слабее, чем ореол неба вокруг Солнца. Поэтому её можно наблюдать только в узком диапазоне спектра, в спектральных линиях излучения короны. Для этого используют специальный фильтр или спектрограф. Это самый важный вспомогательный прибор для астрофизических исследований. Многие солнечные телескопы служат лишь для того, чтобы направлять пучок солнечного света в спектрограф. Основными его элементами являются: щель для ограничения поступающего света; коллиматор (линза или зеркало), который делает параллельным пучок лучей; дифракционная решётка для разложения белого света в спектр и фотокамера или иной детектор изображения.
Яркость Солнца велика, и оно, в отличие от всех остальных звёзд, расположено очень близко к Земле. Поэтому у астрономов нет необходимости собирать всё приходящее излучение, а основной задачей для солнечных телескопов является получение как можно большего масштаба изображения. Крупнейший инструмент для наблюдений Солнца с зеркалом 1,6 м находится в обсерватории Китт Пик, имеет фокусное расстояние 82,6 м и даёт изображение нашего светила диаметром 82 см. А лучшие фотографии Солнца позволяют увидеть детали на его поверхности размером около 100 км.
Внутреннее строение Солнца
Солнце — огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. В центральной части Солнца находится источник его энергии — та «печка», которая нагревает его и не даёт ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причём чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. Кельвинов, происходит выделение энергии в результате слияния атомов лёгких химических элементов в атомы более тяжёлых.
Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.
Вокруг ядра — зона лучистого переноса энергии, она распространяется путём поглощения и излучения веществом порций света — квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идёт поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты всё время меняют направление, почти столь же часто двигаясь назад, как и вперёд. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.
В конвективной зоне энергия передаётся уже не излучением, а конвекцией — перемешиванием. Огромные потоки горячего газа поднимаются вверх, где отдают своё тепло окружающей среде, а охлаждённый солнечный газ опускается вниз.
Атмосфера Солнца — его внешние слои. Оттуда часть излучения беспрепятственно уходит в окружающее пространство. Атмосфера начинается на 200–300 км глубже видимого края солнечного диска. Самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.