И вот 3 ноября 1957 года второй советский искусственный спутник Земли взял с собой на орбиту приборы, регистрирующие рентгеновское излучение. Кстати, лишь три года спустя начались подобные эксперименты в США. Приборы не замедлили подтвердить: да, от Солнца исходят рентгеновы лучи. И сразу же обнаружилась удивительная вещь: излучение не было постоянным — оно пульсировало. Относительно спокойные периоды сменялись бурными, когда поток лучей возрастал в десятки раз. Столь буйный характер рентгеновского излучения Солнца предвещал, что потребуются исследования долгие и кропотливые. Так и произошло. Целых двадцать лет понадобилось, чтобы постепенно, по черточке, по штриху нарисовать рентгеновский «портрет» нашего светила.
Прежде всего выяснили, где именно на Солнце рождается рентгеновское излучение. Приборы, раз за разом «ощупывая» светило, обнаружили, что источники излучения располагаются не на его поверхности, а над ней — в короне. И даже не во всей короне, а в отдельных ее небольших областях, которые называли конденсациями. Они-то и оказались тесно связанными с солнечными вспышками — одновременно с ними возникают и исчезают. Теперь осталось ответить на вопрос: почему рентгеновское излучение появляется именно в конденсациях?
Тщательное изучение многих сотен спектрограмм принесло разгадку. Дело в том, что для конденсаций характерна очень высокая температура. Если на поверхности Солнца «всего лишь» 6 тысяч градусов, в короне уже «пожарче» — до одного миллиона, то в конденсациях температура достигает 3–5 миллионов градусов. Вот почему атомы, словно не выдержав чудовищной жары, «раздеваются», теряя свои электроны. Так установили природу солнечного рентгена: его порождает местный разогрев отдельных участков короны.
Ну и какое нам, казалось бы, дело до этого? Рентгеновское излучение до земной поверхности все равно не доходит. Может ли оно существенно повлиять на свойства окружающего нас мира?
Оказывается, может, и самым непосредственным образом. Наряду с ультрафиолетом рентгеновское излучение обеспечивает нам дальнюю радиосвязь. Обрушиваясь на атмосферу, оно разбивает ее атомы, срывая с них электроны и превращая в ионы. Так образуется ионосфера — «зеркало», отражающее радиоволны наземных радиостанций. Но это еще не все.
Рентгеновские лучи пагубно действуют на покрытие космических аппаратов, и с этим приходится считаться конструкторам. Белая краска, например, с течением времени темнеет. А это может нарушить температурный режим внутри спутника. Поэтому сейчас все покрытия для космических аппаратов проходят обязательную проверку на рентгеноустойчивость.
Вот вам конкретная польза от исследований, которые еще далеко не закончены.
Давно было замечено, что вспышка на Солнце неизменно сопровождается нарушением радиосвязи на всей освещенной части планеты. Долгое время было непонятно, как работает механизм этого явления. Все встало на свои места, когда удалось установить, что в том месте, где происходит вспышка, резко, в тысячу раз, увеличивается рентгеновское излучение. Оно-то и вызывает ионосферные возмущения, из-за которых нарушается радиосвязь на Земле.
Однако связать рентгеновское излучение со вспышками — это полдела. Надо было определить, где и отчего возникают вспышки, как они протекают? Для этих исследований в Физическом институте АН СССР имени П. Н. Лебедева придумали и построили специальную аппаратуру. С ее помощью ученые выяснили, что солнечное вещество при вспышке нагревается до 30–50 миллионов градусов. Эта чудовищная температура порождает резкий всплеск мощного, или, как говорят специалисты, жесткого, рентгеновского излучения. Энергия такого своеобразного взрыва, происходящего в солнечной атмосфере, эквивалентна миллиарду водородных бомб! Откуда же она берется на Солнце?
И снова спутники и ракеты понесли в космос фотокамеры, спектрографы, поляриметры… В конце концов ученые убедились, что вспышка черпает энергию из магнитного поля Солнца. Когда оно перестраивается, то в плазме солнечной короны образуются мощные электрические токи, подобно тому как они возбуждаются в динамо-машине. Эти токи при определенных условиях нагревают солнечное вещество до немыслимо огромной температуры. Вот вам и вспышка. Иногда вспышку вызывает своего рода «разрыв» токовой цепи. Тогда в этом месте частицы плазмы разгоняются до колоссальных скоростей и вырываются в пространство. Между прочим, некоторые из них — протоны — могут быть опасными для космонавтов.