Выбрать главу
, о котором шла речь выше, переменная y находится в обратной пропорциональной зависимости от xa.

График уравнения степенного закона y = x размещен ниже. На первом графике в нормальном масштабе кривая по мере повышения выравнивается. Если y — это площадь, а x — объем, то это показывает, что по мере увеличения объема площадь тоже увеличивается, но не так быстро. На графике в двойном логарифмическом масштабе (второй график) степенной закон, отражающий прямо пропорциональную зависимость, дает прямую линию с наклоном вправо.

Кривая y = x на графике в простом и двойном логарифмическом масштабе

Уравнение степенной зависимости между объемом и площадью обозначается также термином «закон масштабирования», поскольку оно демонстрирует, что происходит с измеримой величиной объекта (в данном случае площадью поперечного сечения) в результате увеличения общего размера.

В 30-х годах ХХ столетия швейцарский зоолог Макс Клайбер измерил вес нескольких видов млекопитающих и их уровень метаболизма (минимальное количество энергии, вырабатываемое животными в состоянии покоя)[53]. Когда ученый отобразил полученные данные на графике в двойном логарифмическом масштабе, получилась прямая линия, на основании которой он вывел следующий степенной закон:

скорость обмена веществ ≈ 70 (масса)¾

Этот закон известен как закон Клайбера. Впоследствии биологи расширили его действие на всех теплокровных животных, как показано на представленном ниже рисунке. Скорость обмена веществ растет не так быстро, как масса, а это говорит о том, что чем крупнее животные, тем эффективнее они вырабатывают энергию. Было также выявлено, что жизнь животных подчиняется и многим другим законам масштабирования. Например, продолжительность жизни животных прямо пропорциональна массе в степени ¼, а частота сердечных сокращений обратно пропорциональна массе в степени ¼. Поскольку коэффициент степенного закона — это в большинстве случаев величина, кратная ¼, биологические степенные законы называют законами четвертного степенного масштабирования. Учитывая разнообразие животного мира (размер млекопитающих колеблется от этрусской мыши весом около одного грамма до голубого кита, который в 100 миллионов раз тяжелее), действительно замечательно, что информация о размере животного позволяет так много сказать о нем.

Закон Клайбера

Физик Джеффри Уэст из Института Санта-Фе и биологи Джеймс Браун и Брайан Энквист из Университета Нью-Мексико разработали математическую теорию, которая объясняет эффект четвертного степенного масштабирования[54] Если в общих чертах, то они утверждают, что при рассмотрении любого организма как транспортной системы (кровь поступает в аорту, разветвляющуюся на артерии, которые, в свою очередь, разветвляются на более узкие кровеносные сосуды) ее оптимизация под имеющееся пространство порождает степенной закон. Подробное объяснение данного феномена выходит за рамки материала этой книги, но представляет интерес в данном контексте в связи с другой работой Уэста — изучением организма иного типа: города.

Уэст и его коллеги обнаружили, что масштабирование по степенному закону весьма характерно для маленьких и больших городов[55]. Проанализировав огромное количество экономических и социальных данных и отобразив полученные результаты на графиках в двойном логарифмическом масштабе, они установили, что в США имеют место следующие закономерности:

количество изобретателей = k (численность населения)1,25

совокупная заработная плата = k (численность населения)1,12

количество случаев заболевания СПИДом = k (численность населения)1,23

количество тяжких преступлений = k (численность населения)1,16

В этих уравнениях показатель степени (экспонента) больше 1, а это значит, что чем крупнее город, тем в нем больше изобретателей, совокупной заработной платы, случаев заболеваний СПИДом и тяжких преступлений на душу населения. Здесь налицо пропорциональная зависимость. По всем этим городским индикаторам значение показателей степени составляет примерно 1,2, и такая сосредоточенность вокруг одного значения интересна сама по себе. Исходя из этого, получается, что при увеличении размера города вдвое можно ожидать роста количества изобретателей, совокупной заработной платы, случаев заболеваний СПИДом и тяжких преступлений на душу населения на 15 процентов.

вернуться

53

Melanie Mitchell, Complexity: A Guided Tour, Oxford University Press, 2009.

вернуться

54

Geoffrey B. West, James H. Brown, and Brian J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science, 1997.

вернуться

55

Luis M. A. Bettencourt et al., Growth, innovation, scaling, and the pace of life in cities, PNAS, 2007.