Идея состояла в том, что если стерильные нейтрино — и есть темная материя, то они заполняют нашу Галактику даже там, где нет никаких звезд. Поэтому фотоны на 3,5 Кэ*В, образованные распадом частиц «темного гало», должны регистрироваться и в пустотах. Однако изучение более чем 4000 снимков, полученных XMM-Newton начиная с 1999 года, ничего не дало. Возможно, эти частицы в далеких галактиках создаются не стерильными нейтрино, а вполне обычными частицами, в ходе пока не установленных процессов.
Сторонники «гипотезы стерильного нейтрино» не согласны с такими выводами — да и с результатами команды Сафди. Так, Алексей Боярский из Лейденского университета сообщил, что аналогичную работу с «пустотами» провела его группа, действительно зарегистрировав ожидаемый поток фотонов с энергиями 3,5 Кэ*В. Разные подходы к обработке данных дали совершенно разные результаты — и дискуссия вокруг стерильных нейтрино еще, видимо, далека от завершения.
naked-science.ru, 27 марта 2020, Сергей Васильев
https://naked-science.ru/article/astronomy/svyaz-temnoj-materii-i-nejtrino-ne-podtverdilas
Журнал Science, 2020
Бенджамин Сафди (Benjamin Safdi) и его коллеги из Мичиганского университета и Калифорнийского университета в Беркли.
https://science.sciencemag.org/cgi/doi/10.1126/science.aaw3772
Глава 11-15-12
Эксперимент не обнаружил никаких признаков стерильных нейтрино
Ноябрь 2021
Мы не знаем, что такое темная материя. Мы знаем характеристики темной материи и многое из того, как она ведет себя, поэтому мы знаем, какими физическими свойствами должна обладать темная материя, но ни одна известная материя не обладает всеми необходимыми характеристиками темной материи.
Самое близкое, что у нас есть - это нейтрино. Они слабо взаимодействуют с другой материей и не сильно взаимодействуют со светом, поэтому их можно считать формой темной материи. Проблема заключается в том, что все три известные разновидности нейтрино имеют чрезвычайно малые массы. Из-за этого они носятся по космосу почти со скоростью света. Это означает, что нейтрино являются формой «горячей» темной материи, точно так же, как горячий газ состоит из быстро движущихся молекул. Основываясь на наблюдениях за темной материей, таких как скопления галактик, мы знаем, что космическая темная материя должна быть в основном холодной. Нейтрино могут составлять небольшую часть темной материи, но большая часть темной материи должна быть чем-то другим.
Но поскольку нейтрино так близки к удовлетворению свойств темной материи, некоторые ученые утверждают, что темная материя может быть еще не открытой разновидностью, известной как стерильные нейтрино. Как и другие элементарные частицы, нейтрино обладают характеристикой, известной как спиральность. В принципе, нейтрино может вращаться по часовой стрелке вдоль направления своего движения (левая спиральность) или против часовой стрелки вдоль своего движения (правая). Большинство частиц могут иметь любой вид спиральности, но мы видим только левосторонние нейтрино и правосторонние антинейтрино.
Это означает, что если правосторонние нейтрино существуют, они не взаимодействуют с обычной материей, а только с гравитацией. Таким образом, они «стерильны». И если бы они имели значительно большую массу, чем обычные нейтрино, стерильные нейтрино были бы «холодными» и могли бы стать решением проблемы темной материи. Это отличная идея, но, к сожалению, как показывает новое исследование, она не соответствует действительности.
В новом исследовании рассматривались данные, полученные в результате сотрудничества Fermilab с MicroBooNE. Нейтрино направили в детектор MicroBooNE, чтобы увидеть, какие типы взаимодействий происходят с обычным веществом. Более ранние исследования, такие как эксперимент с жидкостным сцинтилляторным нейтринным детектором в Лос-Аламосе и MiniBooNE от Fermilab, обнаружили больше событий, чем предсказывает стандартная модель. Одно из возможных решений этой загадки состоит в том, что стерильные нейтрино, взаимодействующие с другими нейтрино, создают избыток электронов в наблюдаемых событиях. Другое объяснение заключается в том, что фоновые фотоны исказили данные. Коллаборация MicroBooNE достаточно точна, чтобы рассмотреть любой из этих вариантов и на удивление исключить оба варианта. Данные исключают фоновые фотоны с достоверностью 95% и стерильные нейтрино с достоверностью 99%.