Выбрать главу

               В конце ноября прошлого года китайская космическая обсерватория DAMPE с хорошим разрешением и низким уровнем шума измерила энергетический спектр космических электронов и позитронов. Это позволило подтвердить «провал» на энергиях больше одного тераэлектронвольта и нащупать резкий «всплеск» на энергии около 1,4 тераэлектронвольт, который может указывать на аннигиляцию или столкновение частиц темной материи. Или оказаться статистической флуктуацией — пока что DAMPE еще не успел собрать достаточно данных, чтобы исключить такую возможность.

nplus1, 13 марта 2018, Дмитрий Трунин

https://nplus1.ru/news/2018/03/13/no-DM-annihilation

Physical Review D, 2018

Бенджамин Сафди (Benjamin Safdi)

Телескоп Ферми (Fermi Gamma-ray Space Telescope)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.063005

Глава 11-2-5

Распределение материи и гамма-лучей указало на аннигиляцию темной материи 

Март 2020

Астрономы сравнили распределение материи во Вселенной с фоновым гамма-излучением и обнаружили корреляции между ними. Основную долю сигнала можно объяснить влиянием неярких блазаров, но часть должна быть связана либо с новой популяцией объектов с необычными свойствами, либо с принципиально иным классом источников. Не исключено, что он представляет собой аннигиляцию частиц темной материи. Статья опубликована в журнале Physical Review Letters.

               Ряд астрономических наблюдений показывает, что помимо известного вещества во Вселенной присутствует и компонент другой природы, получивший название темной материи. Согласно наиболее популярным гипотезам, темная материя состоит из частиц с массами порядка протона или больше.

               Некоторые теории устройства темной материи предполагают, что ее частицы могут аннигилировать при реакции друг с другом. В таком случае они должны превращаться в пары других частиц, в том числе фотонов высоких энергий. Поиски подобных сигналов продолжаются уже несколько лет, но убедительных данных пока получено не было.

               Одно из наблюдательных указаний на существование темной материи заключается в существенно большей гравитационной массе галактик и их скоплений, чем можно предположить на основе содержащихся в них звезд. Такой вывод можно сделать, изучая искривление лучей света от гравитационного линзирования.

               Группа ученых при участии Симона Аммаццалорсо (Simone Ammazzalorso) из Туринского университета провела сравнение карты слабого линзирования, полученной в рамках обзора DES, и распределения фоновых гамма-источников по данным космического телескопа «Ферми». Оказалось, что положение гравитационных линз, за которое в первую очередь должна отвечать темная материя, коррелирует с координатами высокоэнергетических квантов света. Авторы отмечают, что другие авторы ранее пытались найти подобный сигнал с использованием других данных, но ни одной группе исследователей этого не удалось.

               Анализ показал, что большая часть сигнала приходится на небольшие угловые масштабы (менее 0,3 градусов) и высокие энергии. Такое влияние проще всего объяснить присутствием фоновой популяции точечных источников с жестким спектром (крутой зависимостью потока от частоты) с показателем порядка 1,8. На роль таких объектов подходят блазары — активные ядра галактик.

               Также астрономы обнаружили менее статистически значимую корреляцию на бóльших угловых масштабах.. Оказалось, что со статистической значимостью около трех стандартных отклонений в сигнале присутствует вклад аннигиляции частиц темной материи с массами 65 ± 25 гигаэлектронвольт.

               Итоговая значимость сигнала темной материи не очень велика. Также не исключено, что популяции тусклых высокоэнергетических источников отличаются по параметрам от более ярких известных. В таком случае сделанные оценки необходимо корректировать.

nplus1.ru, 12 марта 2020, Тимур Кешелава

https://nplus1.ru/news/2020/03/12/gamma-ray-and-lensing

Журнал Physical Review Letters. 2020

Симон Аммаццалорсо (Simone Ammazzalorso) из Туринского университета

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.101102