Выбрать главу

               Ученые исследовали два вида реакций: в одном случае продуктом становится нейтрино, а в другом — бета-частица (то есть электрон или позитрон). При этом для рассмотренных мишеней оба процесса не могут происходить самопроизвольно: для их протекания нужна дополнительная энергия. Последнее позволяет исключить ошибочные сигналы: в таких условиях регистрация нейтрино или бета-частицы на детекторе гарантирует, что в мишень что-то врезалось, и необходимо лишь установить тип налетающей частицы.

               По результатам исследования авторы установили, что в реакциях с испусканием нейтрино, которые протекают при участии частиц темной материи, ядро-мишень приобретает строго определенные значения энергии. Это позволит в будущем легко отсеивать лишние данные — то есть снизить фон и улучшить чувствительность экспериментов. Для процессов с участием бета-частиц физики предсказали целую цепочку последующих реакций, которой сопутствует рождение ряда известных частиц. Благодаря этому обнаружить поглощение также становится значительно проще. Кроме того, ученые заключили, что для поиска темной материи по новой методике можно использовать уже существующие детекторы. Их чувствительность позволяет если не обнаружить гипотетические частицы, то, по меньшей мере, получить важные ограничения на их параметры, которые помогут в дальнейших экспериментах. Таким образом, в этой области можно добиться значительного прогресса, затратив минимальные усилия на приспособление установок.

nplus1.ru, 6 мая 2020, Николай Мартыненко

https://nplus1.ru/news/2020/05/06/dark-matter-absorption

Журнал Physical Review Letters, 2020

Джефф Дрор (Jeff Dror)из Национальной лаборатории имени Лоуренса в Беркли и Калифорнийского университета

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.181301

Глава 11-12-13

Новая модель показывает, как выглядела бы темная материя, если бы была видимой

Сентябрь 2020

Фиксировать присутствие темной материи можно только по ее гравитационному влиянию на свет и другие формы материи. Еще больше сложностей добавляет тот факт, что попытки напрямую обнаружить темную материю на Земле до сих пор ни разу не увенчались успехом. Однако астрономы постоянно разрабатывают новые модели темной материи, сравнивая затем их с результатами наблюдения и оценивая таким образом точность модели. Исследование опубликовано в журнале Nature.

 

Рис. Темная материя

               Несмотря на «неуловимость» темной материи, нам кое-что удалось о ней узнать. Нам известно, что она не только темная, но еще и холодная. В результате при формировании сгустков темной материи зарождаются ядра галактических скоплений. Также темная материя формирует гало, окружающие галактики, на которые приходится большая часть массы галактики. Однако до сих пор у нас остается без ответа много вопросов о темной материи, поэтому астрономы постоянно разрабатывают новые модели темной материи, сравнивая затем их с результатами наблюдения и оценивая  точность модели.

               Команда астрономов из Гарвард-Смитсоновского астрофизического центра, США, во главе с Дж. Вангом (J. Wang) запустила подробное моделирование космоса, в котором доминирует темная материя, и некоторые из результатов этого моделирования оказались весьма неожиданными. В качестве частицы темной материи команда приняла модель слабо взаимодействующей массивной частицы (ВИМПа) массой порядка 100 масс протона. Моделирование показало, что темная материя формирует гало вокруг галактик, как и при реальных наблюдениях Вселенной. Однако гало при этом формировались не только в галактическом масштабе, но и на всех других масштабах, начиная от небольших гало планетного масштаба и вплоть до массивных гало, окружающих скопления галактик. Эти гало имеют схожую структуру – плотное ядро и диффузную оболочку. Тот факт, что формирование гало наблюдается на всех масштабах, делает этот процесс отличительной особенностью темной материи.

               Одна из гипотез о природе темной материи предполагает, что при столкновении частиц темной материи формируется гамма-излучение. Для проверки своей модели команда Ванга предлагает оценить соответствие сделанных на ее основе прогнозов об испускаемом гамма-излучении со спектром таинственного дополнительного гамма-излучения, которое было обнаружено недавно со стороны центра Галактики.