Выбрать главу

Очень естественно, но неправильно представлять себе сингулярность чем-то вроде беременной точки, висящей в темной безграничной пустоте. Но нет никакой пустоты, нет темноты. У сингулярности нет никакого «вокруг». Нет пространства, которое можно было бы занять, нет никакого места, где бы она находилась. Мы даже не можем задать вопрос, сколько времени она там находится – то ли она только что внезапно возникла, как удачная мысль, то ли была там вечно, спокойно выжидая подходящего момента. Времени не существует. У нее нет прошлого, из которого предстоит выйти.

И вот так, из ничего начинается наша Вселенная.

Одним ослепительным импульсом, в триумфальное мгновение, столь стремительно, что не выразить словами, сингулярность расширяется и обретает космические масштабы, занимая не поддающееся воображению пространство. Первая секунда жизни (секунда, которой многие космологи посвящают жизнь, изучая все более короткие ее мгновения) производит на свет тяготение и другие силы, которые правят в физике. Менее чем за минуту Вселенная достигает в поперечнике миллиона миллиардов километров и продолжает стремительно расти. В этот момент очень жарко, 10 миллиардов градусов, этого достаточно, чтобы протекали ядерные реакции, которые порождают самые легкие элементы – главным образом водород и гелий с крошечной добавкой лития (примерно один атом на сто миллионов). За три минуты формируется 98 процентов всей материи, которая существует сейчас или будет когда-либо существовать. Мы получили Вселенную. Место с удивительными и вдохновляющими перспективами, к тому же очень красивое. И все сделано за время, которое уходит на приготовление сандвича.

Когда это случилось – вопрос дискуссионный. Космологи давно спорят, произошло ли сотворение мира десять миллиардов лет назад, вдвое раньше или же где-то между этими моментами. Общее мнение, похоже, склоняется к величине 13,7 миллиарда лет, но, как мы увидим дальше, такие вещи до обидного трудно измерить. По существу, все, что можно сказать, это то, что в какой-то неопределенной точке в очень далеком прошлом по неизвестным причинам имел место момент, обозначаемый в науке как t = 0. С него все и началось. Конечно, мы еще очень многого не знаем и часто думаем, будто знаем то, чего на самом деле не знаем, или долгое время так думали. Даже сама идея Большого взрыва возникла совсем недавно. Она подробно обсуждается с 1920-х годов, когда бельгийский аббат и ученый Жорж Леметр впервые предложил ее в качестве рабочей гипотезы, но по-настоящему активно она не применялась в космологии до середины 1960-х годов, когда двое молодых радиоастрономов случайно сделали удивительное открытие[3].

Их звали Арно Пензиас и Роберт Уилсон. В 1965 году они пытались использовать большую коммуникационную антенну в Холмделе, штат Нью-Джерси, принадлежавшую компании «Лаборатории Белла», но работу затруднял непрерывный фоновый шум – постоянное шипение, делавшее невозможным проведение экспериментов. Шум был постоянный и однородный. Он приходил из любой точки неба, день и ночь, в любое время года. Целый год молодые астрономы делали все возможное, чтобы найти источник шума и устранить его. Они протестировали каждую электрическую цепь. Они перебрали аппаратуру, проверили контуры, перекрутили провода, зачистили контакты. Они забрались на тарелку антенны и заклеили лентой каждый шов, каждую заклепку. Они вернулись туда с метлами и жесткими щетками и тщательно вычистили, как писали позднее в научной статье, «белое диэлектрическое вещество», которое в обиходе называют птичьим пометом. Ничто не помогало.

Им было невдомек, что всего в 50 километрах от них, в Принстонском университете, группа ученых во главе с Робертом Дикке билась над тем, как найти то самое, от чего они так усердно старались избавиться. Принстонские исследователи разрабатывали идею, выдвинутую в 1940-х годах астрофизиком Георгием Гамовым, уроженцем России: что если заглянуть достаточно глубоко в космос, то можно обнаружить некое фоновое космическое излучение, оставшееся от Большого взрыва. Гамов рассчитал, что к моменту, когда это излучение пересечет космические просторы и достигнет Земли, оно будет представлять собой микроволны[4]. Немного позднее он даже предложил инструмент, который мог бы их зарегистрировать: антенну компании «Лаборатории Белла» в Холмделе. К сожалению, ни Пензиас, ни Уилсон, ни кто-либо из членов принстонской группы не читал эту статью Гамова.

Шум, который слышали Пензиас и Уилсон, конечно же, был шумом, который теоретически предсказал Гамов. Они обнаружили край Вселенной[5], или по крайней мере ее видимой части, на расстоянии более ста миллиардов триллионов километров. Они «видели» первые фотоны – древнейший свет Вселенной, – хотя время и расстояние превратили их, как и предсказывал Гамов, в микроволны. В книге «Расширяющаяся Вселенная» Алан Гут приводит аналогию, помогающую представить это открытие в перспективе. Если считать, что вы всматриваетесь в глубины Вселенной, глядя вниз с сотого этажа Эмпайр-стейт-билдинг (где сотый этаж соответствует нашему времени, а уровень улицы – моменту Большого взрыва), то во время открытия Уилсона и Пензиаса самые отдаленные галактики были обнаружены в районе шестидесятых этажей, а самые далекие объекты – квазары – где-то в районе двадцатых. Открытие Пензиаса и Уилсона довело наше знакомство с видимой Вселенной до высоты в полдюйма от пола цокольного этажа.

вернуться

3

Космология Большого взрыва, а точнее, расширяющейся Вселенной развивалась с 1917 г., когда Виллем де Ситтер нашел решение уравнений Эйнштейна, описывающее расширение пустого пространства. Александр Фридман в 1922 г. нашел решения, из которых следовало, что Вселенная, заполненная материей, должна либо расширяться, либо сжиматься. Эдвин Хаббл в 1929 г. независимо обнаружил разбегание галактик. Георгий Гамов в 1946 г. понял, что расширяющаяся Вселенная в прошлом должна была быть горячей. Но только после открытия Пензиаса и Вильсона космология Большого взрыва получила всеобщее признание среди космологов.

вернуться

4

Микроволновое излучение занимает в электромагнитном спектре промежуточное положение между инфракрасным и радиодиапазонами. Микроволны широко применяются для приготовления пищи в микроволновых печах, а в последнее время – для сканирования багажа в аэропортах.

вернуться

5

Фотоны были во Вселенной и раньше, но они не могли пробиться через горячее и плотное вещество, постоянно поглощались и переизлучались вновь. Только примерно через 300 тыс. лет после Большого взрыва Вселенная достаточно остыла для того, чтобы фотоны смогли миллиарды лет свободно лететь в пространстве, пока их не поймают земные детекторы.