Хронобиолог Джозефина Арендт утверждает, что влияние циркадианных циклов всеобъемлюще: «Можно сказать, что все происходящее в нашем теле подчиняется ритму – пока не доказано обратное»[43].
Так где же внутри нас находится крохотный хронометр, задающий биоритмы? Зайдите на секунду в ванную комнату и посмотритесь в зеркало. Если бы вы могли заглянуть внутрь своего черепа, то увидели бы пару крошечных образований в форме крыла, расположенных в гипоталамусе, позади глаз, чуть ниже их уровня; одно в правом полушарии, второе – в левом. Эти так называемые супрахиазматические ядра (СХЯ)[44], состоящие из 10 тысяч нейронов, и есть главные часы вашего мозга[45]. По прошествии каждых 24 часов СХЯ вырабатывают специальные белки, задействованные в циркадианном цикле. Они контролируют и организуют основные ритмы тела таким образом, что функции организма, связанные со сном, приходятся на ночное время, а связанные с бодрствованием – на дневное. (Когда во время опытов над лабораторными животными СХЯ разрушают путем микрохирургического вмешательства, их жизнедеятельность – движение, потребление воды и пищи, сон – выбивается из нормального 24-часового цикла и беспорядочно распределена в пределах суток.)
Большое зеркало и короткий экскурс в генную инженерию помогут вам уразуметь, где тикают остальные часы вашего организма. Сегодня мы знаем, что в нашем теле их миллиарды: циркадианные будильники скрыты буквально в каждой клеточке – в почках, печени, сердце, крови, костях и глазах. В 2004 году ученые поставили опыт с использованием гена люциферазы (белка, благодаря которому светятся светлячки), чтобы показать в режиме реального времени циркадианные ритмы клеток периферических тканей[46]. И вот клетки всех частей тела «замигали» в такт циркадианному биению.
Хотя циклические ритмы тела определяются главным образом СХЯ, генетические будильнички, спрятанные в клетках других тканей и органов, могут тикать в своем ритме, регулируя пики и спады активности разных органов таким образом, чтобы каждый из них получал необходимое ему в нужный момент в соответствии со своими предпочтениями[47]. Так, часы в клетках сердечной мышцы задают дневные ритмы колебания кровяного давления, а часы в клетках печени – ритмы переваривания пищи и обезвреживания токсичных веществ, например алкоголя.
Совокупность вторичных часов можно сравнить с оркестром, а СХЯ ими дирижируют, подстраивая под световые сигналы из внешнего мира. Впрочем, периферические часы могут выходить из повиновения и действовать по собственной программе. Этот феномен мы наблюдаем, когда согласие расстраивается из-за смены часовых поясов или работы ночью.
Ход каждых часов определяется совокупностью генов. Небольшие различия в этих генах делают одних из нас ранними пташками, встающими с петухами, а других – «совами», с трудом продирающимися сквозь утренние часы и достигающими пика активности к полуночи.
Луис Птачек и его коллеги из Университета Юты первыми доказали генетическую природу хронотипа «жаворонков» в крайнем его проявлении[48]. Эта группа ученых обнаружила у всех членов одной большой семьи «жаворонков» из Юты, страдающих наследственным синдромом опережающей фазы сна, при котором люди засыпают примерно в 7 часов вечера и просыпаются в 2 часа утра, мутацию гена главных часов (СХЯ) Per2[49]. С тех пор Птачек и его сотрудники нашли уже около 60 семей с подобной мутацией. Считалось, что эти люди рано ложатся спать из-за своей подавленности и необщительности. Теперь ясно, что их поведение обусловлено изменениями в «часовых» генах.
Британские ученые также доказали, что истинные «жаворонки» и «совы» являются носителями различных вариантов гена Per3[50]. Примечательно, что практически у всех «жаворонков» была обнаружена более длинная вариация гена, чем у «сов».
Более умеренные проявления утреннего или вечернего хронотипа тоже связаны с генетическими вариациями. В 1998 году группа ученых провела среди 410 человек тест на самоидентификацию «сова – жаворонок», чтобы выявить, в какое время испытуемые предпочитают совершать те или иные действия (вставать с постели, заниматься спортом, выполнять умственную работу), установить уровень их активности после пробуждения и определить их место в спектре хронотипов[51]. У испытуемых взяли кровь на анализ и сравнили структуру одного из «часовых» генов. Люди с одной вариацией гена предпочитали вечернее время, отставая от «жаворонков» в различных видах активности как минимум на 45 минут.
43
J. Arendt, “Biological rhythms: the science of chronobiology”,
44
45
P. L. Lowrey and J. S. Takahashi, “Mammalian circadian biology: elucidating genome-wide levels of temporal organization”,
46
S.-H. Yoo et al., “Period 2: luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues”,
47
S. Yamazaki et al., “Resetting central and peripheral circadian oscillators in transgenic rats”,
48
C. R. Jones et al., “Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans”,
50
S. Archer et al., “A length polymorphism in the circadian clock gene
51
D. Katzenberg, “A clock polymorphism associated with human diurnal preference”,