Итак, почти любое понятие (за исключением единичных и широких, философских) можно как ограничить, так и обобщить. Другими словами, подобрать для него как видовое понятие, так и родовое. Например, ограничением понятия «человек» (Ч) будет понятие «спортсмен» (С) или «писатель», или «мужчина», или «молодой человек» и т. п., а его обобщением будет понятие «живое существо» (Ж. с.) (рис. 14).
1. Что такое ограничение понятия?
2. Что представляет собой логическая операция обобщения понятия?
3. Каким образом ограничения и обобщения понятий складываются в логические цепочки? Каковы пределы цепочек ограничений и обобщений?
4. Какие ошибки часто допускают при ограничении и обобщении понятий? Продемонстрируйте на самостоятельно подобранных примерах, что целое и часть нельзя путать с видом и родом.
5. Всякое ли понятие можно подвергнуть ограничению или обобщению? Какие понятия не поддаются этим логическим операциям?
6. Подберите десять любых понятий и проделайте с ними ограничение и обобщение, т. е. подберите для каждого как видовое, так и родовое понятие, иллюстрируя эти операции схемами Эйлера.
1.5. Операция определения понятия
Определение понятия – это логическая операция, которая раскрывает содержание понятия.
Определения бывают явными и неявными.
Явное определение непосредственно раскрывает содержание понятия, даёт прямой ответ на вопрос, чем является объект, который оно обозначает. Например: «Термометр – это физический прибор, предназначенный для измерения температуры», – явное определение.
Неявное(контекстуальное) определение раскрывает содержание понятия не прямо, а косвенно, с помощью контекста, в котором это понятие употребляется. Например, из следующей фразы: «Во время этого грандиозного эксперимента сверхточные термометры зафиксировали температуру в 1 000 °C», – косвенно следует ответ на вопрос: «Что такое термометр?» – вытекает неявное определение этого понятия. Понятно, что определениями в полном смысле этого слова надо считать явные определения. В дальнейшем речь пойдёт именно о них.
Определения также бывают реальными и номинальными.
Реальное определение раскрывает содержание понятия, обозначающего какой-то объект, т. е. они посвящены объектам. Например:
«Термометр – это физический прибор, предназначенный для измерения температуры» – реальное определение.
Номинальное (от лат. nomen – имя) раскрывает значение термина, которым выражено какое-либо понятие, т. е они посвящены терминам (словам). Например: «Слово «термометр» обозначает физический прибор, предназначенный для измерения температуры», – номинальное определение.
Как видим, принципиальной разницы между реальными и номинальными определениями не существует. Они различаются, как правило, по форме, но не по сути.
Существует несколько способов определения понятия, но среди них выделяется классический способ, который заключается в том, что определяемое понятие подводится под ближайшее к нему родовое понятие, после чего следует указание на его видовое отличие. Например, определение: «Астрономия – это наука о небесных телах», – построено по классическому способу. В нём определяемое понятие «астрономия» сначала подводится под ближайшее к нему родовое понятие «наука» (астрономия – это обязательно наука, но наука – это не обязательно астрономия), а потом указывается на видовое отличие астрономии от других наук: «…о небесных телах». Пользуясь классическим способом, вы сможете дать точное и правильное определение любому понятию, конечно, если определяемый объект или термин вам хорошо знаком, и вы знаете, что он собой представляет или что означает, соответственно. Например, нам требуется дать определение понятию «квадрат». Следуя классическому способу, сначала подведём его под родовое понятие: «Квадрат – это геометрическая фигура», – а затем укажем его видовое отличие от других геометрических фигур, которое заключается в наличии равных сторон и прямых углов. Итак: «Квадрат – это геометрическая фигура, у которой все стороны равны и углы прямые». Давая определение понятию «квадрат», мы могли бы подвести его под более близкое родовое понятие «прямоугольник», и тогда определение получилось бы следующим: «Квадрат – это прямоугольник, у которого все стороны равны», – однако и приведённое выше определение квадрата раскрывает содержание соответствующего понятия и является верным. Обратите внимание на то, что фактически все определения, встречающиеся в научной, учебной и справочной литературе, например в толковых словарях, построены по классическому способу.