Выбрать главу

Также необходимо помнить, что очень важно настроить масштаб отображения карты так, чтобы созданные объекты были пригодны для дальнейшего использования. Например, если Вы оцифровываете данные, настроив масштаб отображения карты на 1:1 000 000, и собираетесь использовать эти данные для создания новой карты масштаба 1:50 000, это неудачная идея. В разделе «Векторные данные» мы указали, к каким проблемам может привести расхождение масштабов конечного продукта и используемых данных.

Что мы узнали?

Закрепим изученный материал:

Оцифровка — это процесс создания векторных объектов, включающих геометрию и атрибуты, и их сохранения в цифровом формате на диске компьютера.

•Геоданные могут храниться в виде файла и вбазе данных.

•Один из наиболее распространенных форматов — шейп-файл, который физически является группой из трех и более файлов (.shp, dbf and.shx).

•До того, как Вы создадите новый векторный слой, Вам понадобится спланировать его тип геометрии и набор атрибутивных полей.

•Тип геометрии может быть точечный, линейный и полигональный.

•Атрибуты могут быть целочисленными (integer), десятичными дробями (decimal numbers), текстовыми (string) и календарно-временными (date).

•Процесс оцифровки состоит из отрисовки геометрии объекта на карте и последующего ввода атрибутивных значений и повторяется для каждого объекта.

Оцифровка с растра происходит с использованием растровых изображений в качестве подложки.

•Профессиональные ГИС-оцифровщики иногда используют графические планшеты.

Попробуйте сами!

Ниже приведено несколько примеров практических заданий для Ваших учеников:

•Составьте список объектов на территории Вашего учебного заведения, которые можно было бы занести в ГИС. Примеры: границы, спортивные объекты, пункты эвакуации и т. д. Постарайтесь использовать разные типы геометрии. Затем разделите учеников на группы и дайте каждой группе задание создать несколько объектов. Попросите их настроить символы, чтобы было проще понять, какие объекты изображены. На основе созданных данных изготовьте карту.

•Найдите спутниковый снимок и скажите ученикам оцифровать определенные объекты с растра.

Если у Вас нет компьютера

Вы можете проделать тот же самый процесс, используя листы кальки и блокнот. Возьмите аэрофотоснимок или распечатанный спутниковый снимок в качестве подложки. В блокноте нарисуйте таблицу, соответствующую атрибутивной таблице в ГИС. Теперь можно рисовать геометрию объектов на кальке, отмечая каждый объект номером. Этот же номер ставится в первой колонке атрибутивной таблицы, а затем заполняются все остальные колонки.

Дополнительные материалы

Веб-сайт:

http://www.k12science.org/curriculum/waterproj/S00project/miami2000/miamiriverfinal.html (школьный проект по оценке качества воды в местной реке).

Руководство Пользователя QGIS также включает более подробную информацию по оцифровке векторных данных в QGIS.

Что дальше?

В следующем разделе мы подробнее рассмотрим растровые данные и узнаем, как изображения используются в ГИС.

Часть 5: Растровые данные

Цель: Понимание, что такое растровые данные и как они используются в ГИС  

Ключевые слова: Растр, Пиксель, Дистанционное Зондирование, Спутник, Изображение, Пространственная Привязка, Геопривязка, Пространственное Разрешение

Обзор

В предыдущих разделах мы подробно рассматривали векторные данные. В то время как векторные объекты используют геометрию (точки, полилинии и полигоны) для представления объектов реального мира, растровые данные основаны на другом подходе. Растры являются матрицами пикселей (также называемых ячейками), каждый из которых хранит определенное значение для области, соответствующую этому пикселу (см. Рисунок 52). В данном разделе мы подробнее изучим растровые данные и случаи их использования.