Когда Вы делаете цветную фотографию цифровым фотоаппаратом, он использует электронные сенсоры для обнаружения красного, зеленого и синего света. Когда фотография отображается на экране или выводится на печать, красный, зеленый и синий цвета (RGB, от англ. Red, Green, Blue) комбинируются для показа спектра цветов, понятного Вашему глазу. Хранение RGB-данных в цифровом формате осуществляется отдельно для каждого из трех цветовых каналов.
В то время как человеческий глаз способен различать только комбинации красного, зеленого и синего цветов, электронные сенсоры могут обнаруживать световые волны другой длины, невидимые для нас. Конечно, цифровые фотоаппараты навряд ли записывают информацию о невидимых частях электромагнитного спектра, потому что люди заинтересованы в сохранении на фотографиях только того, что они могут увидеть сами. Растровые изображения, включающие данные о невидимых участках спектра, часто называются мультиспектральными изображениями. Запись невидимых участков спектра может дать нам полезную географическую информацию. Например, измерение инфракрасного излучения может быть полезным для обнаружения воды в почве.
Так как изображения, содержащие многочисленные цветовые каналы, так полезны для задач ГИС, растровые данные часто поставляются в виде многоканальных изображений. Каждый канал изображения является отдельным слоем. ГИС-приложение комбинирует три различных канала и показывает их как красный, зеленый и синий, чтобы мы могли увидеть их невооруженным глазом. Число каналов в растровом изображении часто называют спектральным разрешением.
Если изображение состоит из одного канала, оно называется черно-белым. Имея черно-белое изображение, можно применить к нему различные цветовые схемы, чтобы сделать различия в значениях пикселей более очевидными. Изображения с цветовыми схемами называют псевдоцветными изображениями.
В ходе обсуждения векторных данных мы отметили, что растровые данные часто используются в качестве подложки при оцифровке. Другой подход заключается в использовании продвинутых компьютерных программ для автоматического распознавания векторных объектов на изображениях. Некоторые объекты, такие как дороги, обнаруживаются по резкому перепаду значений соседних пикселей. Компьютерная программа ищет подобные перепады и автоматически создает векторные объекты на их основе. Подобная функциональность обычно доступна только в высокоспециализированных (и очень дорогих) ГИС-приложениях.
Иногда бывает полезно конвертировать векторные данные в растровые данные. Побочным эффектом такого преобразования выступает потеря атрибутивных данных, связанных с векторной геометрией. В то же время, такая конвертация может быть полезной, если Вам необходимо предоставить геоданные людям, которые не являются специалистами в сфере ГИС. Имея изображение в распространенном формате (например, JPEG), они смогут просмотреть его на своих компьютерах без необходимости устанавливать специализированное ГИС-приложение.
Существует множество интересных аналитических инструментов для работы с растровыми данными. Например, растры могут быть использованы для моделирования водного стока на основе модели рельефа.
Растровые данные широко используются в сельском и лесном хозяйстве для определения биопродуктивности растительности. К примеру, обладая спутниковым снимком, Вы можете выявить области менее интенсивного произрастания культур, и затем использовать полученные данные для увеличения вноса удобрений в конкретных участках полей. Лесники используют растровые данные для оценки количества древесины и потенциала добычи дерева на различных территориях.
Растровые данные также очень важны в управлении чрезвычайными ситуациями. Анализ ЦМР (цифровых моделей рельефа, или растров, пиксели которых содержат информацию о высотах над уровнем моря) помогает в оценке потенциально затопляемых площадей. Полученные данные могут быть использованы для оценки областей, наиболее пострадавших от наводнения, и концентрации спасательных работ на этих территориях.