Выбрать главу
Рисунок 23: Каждое ГИС-приложение имеет наборы символов, которые можно выбирать для отображения слоев.
Рисунок 24: После изменения настроек гораздо проще понять, что на карте изображены деревья.

Условные обозначения — мощный инструмент для придания картам более «живого» вида и упрощения понимания данных, которыми располагает Ваша система. В следующей части («Атрибутивные данные») Вы подробнее узнаете, как символы помогают пользователю считывать данные с карты.

Что мы можем делать с векторными данными в ГИС?

На самом простом уровне мы можем использовать векторные данные в ГИС-приложении так же, как мы используем обычные топографическые карты. Реальные возможности ГИС начинают проявляться, когда вы начинаете задавать вопросы вроде «какие дома находятся в 100-летней зоне затоплений близлежащей реки?», «где лучше разместить больницу, чтобы она была легко доступна как можно большему количеству людей?», «какие учащиеся проживают в определенном пригороде?» и т. д. ГИС является отличным инструментом для ответа на подобные вопросы с помощью векторных данных. Мы называем процесс ответа на такие вопросы пространственным анализом. В дальнейших разделах данного руководства мы рассмотрим пространственный анализ более детально.

Распространенные проблемы с векторными данными

Работа с векторными данными связана с некоторыми проблемами. Мы уже упомянули вопрос различающихся масштабов. Также векторные данные требуют немалой работы и текущего обслуживания для поддержания точности и достоверности данных. Неточные данные могут появиться, когда инструменты для их создания неверно настроены или люди, создающие данные, были невнимательны, а также когда время и финансы не позволяют достаточной степени точность сбора данных, и т. д. Если Вы располагаете некачественными векторными данными, Вы часто можете обнаружить это, просматривая данные в ГИС-приложении. Например, Вы можете видеть разрывы, когда края прилегающих полигонов некорректно состыкованы (см. Рисунок 25 ниже). Когда линейный объект неточно прилегает к другому объекту, с которым он должен быть связан, например дорога не доходит до перекрестка или приток не впадает в реку, это также может вызвать проблемы. Рисунок 26 показывает, как выглядят подобные «недолеты» и «перелеты». Из-за возможности подобных ошибок очень важна внимательная и точная оцифровка. В последующем разделе «Топология» мы рассмотрим некоторые типы ошибок более детально.

Рисунок 25: Когда вершины двух полигонов на их границах не совпадают, появляются разрывы. При мелком масштабе (слева) подобные ошибки могут быть не видны, но при более крупном масштабе можно увидеть небольшой пробел между двумя полигонами.
Рисунок 26: «Недолеты» (1) случаются, когда оцифрованная векторная линия, которая должна соединяться с другой, немного не доходит до нее. «Перелеты» (2) появляются, когда линия пересекает другую линию, с которой она должна быть связана.
Что мы узнали?

Закрепим изученный материал:

Векторные данные служат для представления объектов реального мира в ГИС.

•Векторный объект может иметь один из следующих типов геометрии: точка, линия или полигон.

•Каждый векторный объект имеет атрибутивные данные, описывающие его.

•Геометрия объектов записана в виде вершин.

•Точечная геометрия состоит из одной вершины (X,Y и возможно Z).

•Линейная геометрия состоит из двух и более вершин, формирующих связанную линию.

•Полигональная геометрия состоит из четырех и более вершин, формирующих замкнутый контур, т. е. первая и последняя вершины всегда совпадают.

•Выбор типа геометрии зависит от масштаба, удобства и задач, которые должна решать ГИС.

Оцифровка — это процесс создания цифровых векторных данных путем отрисовки в ГИС-приложении.

•Векторные данные связаны с такими проблемами качества данных, как «перелеты», «недолеты» и разрывы, и о них необходимо помнить.

•Векторные данные можно использовать для пространственного анализа в ГИС-приложении, например для поиска ближайшей к школе больницы.