Даже когда мы переходим к технологии следующего уровня, мы оставляем четкую связь между тем, что было, и тем, что стало. В дизайне часов Apple Watch колесико Digital Crown выглядит в точности как заводная головка в механических часах. В интервью еженедельнику New Yorker дизайнер Джонатан Айв объяснил, что поместил это колесико на корпус с небольшим смещением от центра, чтобы часы напоминали «что-то знакомое». Если бы он разместил колесико в центре, пользователи могли бы решить, что оно выполняет свою изначальную функцию. Если бы он убрал колесико вообще, часы не выглядели бы как часы[12]. Скевоморфы примиряют новое с привычным.
В наших смартфонах полно скевоморфов. Чтобы позвонить, мы нажимаем на иконку с изображением телефонной трубки от аппарата, который давным-давно исчез из нашей технической реальности. Камера в смартфоне при съемке воспроизводит аудиофайл, где записан звук затвора фотоаппарата, хотя в цифровых камерах нет механического затвора. Мы удаляем ненужную информацию, перетаскивая файлы в корзину. Мы сохраняем файлы, нажимая на изображение дискеты — артефакта, который вымер, как динозавр. Мы совершаем покупки онлайн, складывая их в виртуальную корзину. Подобные связи обеспечивают гладкий переход от прошлого к настоящему. Даже самые последние технические новинки связаны невидимой пуповиной с нашей историей.
Баланс между исследованием и использованием присущ не только человеку. Тем не менее, пока поколения белок шныряли по разным кустам, люди со своими технологиями захватили всю планету. Так что головной мозг человека явно чем-то отличается. Чем?
Если бы вам довелось ужинать с зомби, вы вряд ли услышали бы от него какую-то творческую идею. Зомби действуют на автомате: выполняют только то, что заранее определено. Поэтому зомби не катаются на скейте, не пишут мемуары, не запускают космические корабли к Луне, не меняют прическу.
И пусть зомби только выдумка, но эта выдумка отражает одну важную черту окружающего мира: все животные придерживаются преимущественно автоматического поведения. Возьмем, к примеру, пчел. Каждый раз стимул ведет к однотипной реакции, заставляя пчелу выбирать между вариантами: сесть на синий цветок, сесть на желтый цветок, атаковать, лететь прочь. Но почему бы пчеле не проявить творческий подход? Потому что ее нейроны зафиксированы и передают сигналы со «входа» на «выход», как раньше на пожаре по цепочке передавали ведра с водой[13]. В мозге пчелы эти «бригады» начинают формироваться еще до ее рождения: химические сигналы определяют «маршруты» нейронов, формируя таким образом разные области мозга, отвечающие за движение, слух, зрение, обоняние и т. д. Даже исследуя неизвестную территорию, пчела в основном действует на автопилоте. Взывать к разуму пчелы — все равно что взывать к разуму зомби: это биологическая машина с мышлением, жестко запрограммированным миллионами лет эволюции.
В каждом из нас достаточно много от пчелы: такой же нейронный механизм отвечает за широкий спектр действий, которые человек совершает рефлекторно: ходьба, жевание, ныряние, переваривание пищи. И даже когда мы осваиваем что-то новое, мы быстро доводим знания до уровня привычки. В процессе обучения езде на велосипеде, вождению автомобиля, использованию ложки или печати на клавиатуре в головном мозге формируются устойчивые нейронные связи[14]. Самая быстрая нейронная цепь получает преимущество перед другими решениями и сводит к минимуму вероятность ошибки. Нейроны, которые не требуются для выполнения конкретной задачи, в будущем не активируются.
Если бы история на этом закончилась, человеческой экосистемы, какой мы ее знаем, не существовало бы. У нас бы не было сонетов, вертолетов, ходулей, джаза, флагов, калейдоскопов, конфетти и коктейлей. Так в чем же разница между мозгом пчелы и человека? В мозге пчелы один миллион нейронов, тогда как в мозге человека нейронов сто миллиардов, что обеспечивает самые разные модели поведения. Нам повезло не только с количеством нейронов, но и с их организацией. В частности, у человека задействовано больше клеток мозга между восприятием (что происходит?) и действием (так я поступлю). Это позволяет увидеть ситуацию, оценить ее, проанализировать альтернативные варианты и (при необходимости) действовать. Значительная часть нашей жизни протекает в нейронном соседстве между восприятием и действием. Это позволяет нам переходить от рефлекторных действий к изобретениям.
13
Randy L. Buckner and Fenna M. Krienen. The Evolution of Distributed Association Networks in the Human Brain. Trends in Cognitive Sciences 17, no. 12 (2013): pp. 648–662, http://dx.doi.org/10.1016/j.tics.2013.09.017.