— Ладно, давайте снова к «ОМ», — сказал Лоуренс.
— Да! Рассел и Уайтхед. Итак, когда математики начали играть со всякими корнями из минус единицы и кватернионами, это было уже не то, что можно перевести в палки и пробки. И все же они по-прежнему получали верные результаты.
— По крайней мере внутренне непротиворечивые, — уточнил Руди.
— О’кей. Значит, математика — больше, чем физика пробок.
— Так нам представляется, Лоуренс, но возникает вопрос: математика по правде или это только игра в символы? Другими словами: мы открываем Истину или просто балуемся?
— Она должна быть по правде, потому что, когда прикладываешь ее к физике, она работает! Я слышал про общую теорию относительности и знаю, что она подтверждена экспериментами.
— Большая часть математики не поддается экспериментальной проверке, — сказал Руди.
— Вся идея в том, чтобы укрепить связь с физикой, — произнес Алан.
— И при этом не баловаться.
— И для этого написаны «ОМ»?
— Рассел и Уайтхед свели все математические понятия к таким жутко простым вещам, как множества. Отсюда они перешли к целым числам и так далее.
— Но как можно свести к множествам, например, число «p»?
— Нельзя, — сказал Алан, — зато его можно выразить цепочкой цифр: три запятая один четыре один пять девять и так далее.
— То есть через целые числа, — сказал Руди.
— Нечестно! Само «p» — не целое!
— Но можно вычислить цифры «p», одну за другой, по некой формуле. И можно написать формулу вроде такой!
Алан нацарапал на земле:
— Я использовал ряд Лейбница, чтобы утешить нашего друга. Видишь, Лоуренс? Это цепочка символов.
— Цепочку символов вижу, — нехотя согласился Лоуренс.
— Можно идти дальше? Гёдель, всего несколько лет назад, сказал: «Послушайте! Вы согласны, что все в математике просто цепочка символов? Тогда вот!» И показал, что любую цепочку символов — вроде этой — можно превратить в целые числа.
— Как?
— Ничего сложного, Лоуренс, простой шифр. Произвольный. Вместо уродливой сигмы напиши число 538 и так далее.
— Очень близко к баловству.
— Нет, нет! Потому что Гёдель расставил ловушку. В формулу можно подставлять числа, да?
— Конечно. Как 2x.
— Да. Можно подставить на место х любое число, и формула его удвоит. Но если математическую формулу вроде этой для вычисления числа «p» можно закодировать числом, то ее можно подставить в другую формулу. Формулу в формулу!
— И это все?
— Нет. Потом он доказал, очень простым способом, что если формулы можно применить к формулам, то мы вправе сказать: «данное утверждение недоказуемо». Что страшно удивило Гильберта и других, ожидавших противоположного результата.
— Этого твоего Гильберта ты уже упоминал?
— Нет, Лоуренс, он появился в нашем разговоре только сейчас.
— Кто он?
— Человек, который задает трудные вопросы. У него их целый список. Гёдель ответил на один.
— А фон Тьюринг — на другой, — добавил Руди.
— Это еще кто?
— Это я, — сказал Алан. — Только Руди шутит. В Тьюринге вообще-то нет приставки «фон».
— Сегодня ночью будет. — Руди как-то странно взглянул на Алана. Будь Лоуренс повзрослее, он бы определил этот взгляд как «страстный».
— Ладно, не томи. На какой вопрос Гильберта ты ответил?
— Entscheidungsproblem[5], — сказал Руди.
— То есть?
Алан объяснил:
— Гильберт хотел знать, можно ли в принципе доказать истинность или ложность любого высказывания.
— Но Гёдель все изменил, — произнес Руди.
— Верно. После Гёделя вопрос стал звучать так: «Можно ли определить, доказуемо или нет некое — любое — конкретное высказывание?» Другими словами, есть ли механический процесс, посредством которого мы в состоянии отсеять доказуемые утверждения от недоказуемых?
— «Механический процесс», Алан, это вообще-то метафора…
— Ладно тебе, Руди. Мы с Лоуренсом не боимся механики.
— Усек, — сказал Лоуренс.
— Что значит «усек»? — спросил Алан.
— Твоя машина — не для дзета-функций, а другая, о которой мы говорили…
— Она называется Универсальная Машина Тьюринга, — сказал Руди.
— Вся эта хреновина нужна, чтобы отделять недоказуемые утверждения от доказуемых, верно?
— Вот для чего я придумал ее основную идею, — сказал Алан. — Так что на вопрос Гильберта ответ уже есть. Теперь я хочу на самом деле ее построить, чтобы обыграть Руди в шахматы.