Выбрать главу

Методология прикладного использования ДНК-технологий

ДНК-технология или генная (генетическая) инженерия — направление исследований в генетике, в рамках которого разрабатывают приемы, позволяющие по заранее намеченному плану перестраивать геном организмов (совокупность генетических элементов организма), изменяя в нем генетическую информацию. С помощью рестриктаз и лигаз получают перестроенные (химерные) молекулы ДНК. Их еще называют рекомбинантными — полученными в результате объединения in vitro в природе никогда вместе не существующих фрагментов ДНК (например, ДНК бактерии и растения). Живую систему для размножения рекомбинантных молекул выбирают среди бактерий. Получение рекомбинантных ДНК в количестве, необходимом для проведения генетической модификации, позволяет перейти непосредственно к ключевому этапу получения ГМ культур: трансформации растительных клеток. В идеале трансформационная система должна отвечать определенным условиям: быть простой, эффективной и дешевой. Однако, несмотря на сравнительно широкий выбор методических приемов, всем требованиям не соответствует ни один из них. Тем не менее в настоящее время для производства трансгенных культур в промышленных масштабах в основном применяются два способа модификации растительного генома — агробактериальный (то, как это делается в природе, см. выше) и баллистический, баллистическая трансформация растительных клеток (еще называемый микробомбардировкой, методом ускорения частиц, биолистикой — термин, произошедший от объединения слов «биология» и «баллистика») состоит в «обстреле» растительных клеток золотыми или вольфрамовыми частицами, которые играют роль переносчика рекомбинантной ДНК. В сущности, микрочастицы могут быть из любого химически инертного металла с достаточно высокой молекулярной массой (золото, вольфрам, палладий, родий, платина, индий), чтобы не образовывать с ДНК металлорганических комплексов и обладать достаточно высокой кинетической энергией для эффективной пенетрации клеточной стенки. Частицам размером 1,5-3 микрона, конъюгированным с ДНК, придается скорость 300-600 м/сек посредством электрического разряда или декомпрессии в направлении клеток-мишеней, подлежащих трансформации. Несмотря на то, что эффективность этого способа невысока (не более 15%), баллистический метод — весьма распространенный прием трансформации однодольных растений.

В последнее время разработан и успешно применен комбинированный метод трансформации, названный агролистическим. Он основан на объединении баллистического и агробактериального способов и заключается во введении в геном растения каким-либо физическим методом (в большинстве случаев баллистическим) чужеродной ДНК, включающей агробактериальные гены.

Конечный этап — получение трансгенных растений, как правило, преодолевается легче, чем предыдущие процедуры. Благодаря тому, что многие клетки растений тотипотентны, то есть из любой единичной клетки может вырасти целое плодоносящее растение, трансгенные растения получают из трансформированных клеток.

Культивирование растений с модифицированным геномом включает несколько серий пересевов на селективных средах. Длительность регенерации трансформированных растений достигает нескольких месяцев, причем все это время они находятся в среде с высокими концентрациями селективных веществ. Как правило, применяются маркерные гены двух основных типов — селективные и репортерные. Селективные придают растениям устойчивость к антибиотикам или гербицидам, позволяя трансформированным растениям расти в условиях действия селективных агентов. Репортерные гены детерминируют синтез нейтральных для клеток белков, наличие которых в тканях может быть легко установлено. При получении генетически модифицированного растения, устойчивого к пестицидам, ген устойчивости выступает как в роли целевого, так и селективного гена.

Присутствие маркерных генов, особенно устойчивых к антибиотикам, служит одним из главных доводов против использования трансгенных продуктов. Потому-то и был разработан и теперь активно применяется ряд методических подходов, обеспечивающих элиминацию маркерного гена, когда фактически он уже не нужен.

После получения целого трансгенного растения проводится анализ геномной ДНК растений, направленный на то, чтобы определить присутствие  целевого  гена.  Он  проводится  различными  путями. В большинстве случаев это достаточно сложные и дорогостоящие лабораторные методы, например, ПЦР-анализ, рестрикционный анализ и др. Заключительная стадия лабораторного тестирования ГМ растений включает биологические исследования, направленные на подтверждение стабильного фенотипического проявления целевого признака.

С использованием описанных выше подходов к настоящему времени в мире созданы и доведены до испытаний в полевых условиях ГМ формы сельскохозяйственных растений, относящиеся более чем к 50 видам. Так, получены трансгенные формы томатов (более 260), сои (более 200), хлопчатника (более 150), тыквенных растений (более 80), табака (более 80), а также пшеницы, риса, подсолнечника, огурцов, салата, яблонь и других (более 70). Из них значительную часть представляют растения, устойчивые к насекомым-вредителям и гербицидам.

Большинство производящихся в настоящее время в промышленных объемах ГМ сельскохозяйственных растений (или растений первого поколения) имеют свойства, обеспечивающие повышение урожайности или облегчение уборки, хранения, переработки урожая. Эти качества позволяют снизить применение гербицидов и инсектицидов, что оказывает положительное влияние на окружающую среду, сократить количество технологических операций при переработке, а также уменьшить потери урожая, повысить качество продукции, сэкономить средства и материальные ресурсы.

Прикладные ДНК-технологии: достижения и перспективы

Основные задачи современной селекции

Рассматривая возможности современной селекции и генетической инженерии, Жученко (2003) определяет принципиально новые приоритеты самой селекции растений, вытекающие из их современного понимания:

• роли интегрированности генома у высших эукариот, проявляющейся в формировании блоков коадаптированных генов и сохранении их status quo при передаче наследственной информации от одного поколения другому;

• необходимости перехода от управления изменчивостью моногенных признаков к комбинаторике количественных (полигенных) признаков, многие из которых относятся к хозяйственно ценным;