Выбрать главу

Почти тридцать лет спустя вновь возникла драматическая ситуация. На этот раз паника охватила молекулярных биологов. К тому времени они научились обращаться с генами и,  казалось, были готовы создать молекулярных монстров, среди которых могли возникнуть и чудища с губительными для человека свойствами.

Исследователи — на этот раз сами — забили тревогу. Их выступления, опубликованные в широкой печати, стали сенсацией. Слова «генная инженерия» приобрели популярность, вызывая у людей одновременно как чувство надежды, радости, веры в науку и всеобщий прогресс, так и чувство тревоги, страха, апокалипсических видений.

Тень от ядерных взрывов легла на генно-инженерные исследования. Общественность США была склонна толковать добровольный «мораторий» молекулярных биологов по-своему. Раз что-то запрещают, рассуждали неспециалисты, значит, все эти опыты крайне опасны. Подобные настроения подогревала пресса. Это ее вина, что некомпетентные, далекие от науки люди считали себя вправе в середине 70-х годов XX века (разгар генно-инженерного кризиса) обличать науку. Рядовые читатели, узнавая из газетных и журнальных статей с хлесткими заголовками об успехах и неудачах наук, не только критиковали ученых, отпускали в их адрес колкие, язвительные замечания и упреки, но и в самом прямом смысле вершили над наукой суд.

Науку судили и раньше. Вспомним хотя бы, какие страсти разгорелись после выхода в свет книг Чарльза Дарвина о происхождении и эволюции человека. В 1926 году в городе Дейтон (штат Теннеси, США) состоялся знаменитый «обезьяний процесс». Учитель Д. Скопе обвинялся в том, что он в школе излагал теорию Дарвина (ее преподавание в ряде южных штатов было запрещено). Высокий суд тогда отклонил требование защиты о вызове в качестве свидетелей ученых. Скопе же был приговорен к денежному штрафу. Было всякое. Однако раньше общественность (граждане, не имеющие специальной подготовки для понимания проблем современной науки) не вмешивалась непосредственно в дела ученых, не пыталась диктовать им, какие исследования надо вести, какие нет. Это случилось только в наши дни.

Видя нерешительность ученых, государственные и другие учреждения США стали обсуждать научные проблемы. Трансплантация генов стала поводом для дискуссий в конгрессе на заседаниях подкомиссии по здравоохранению. Дебаты шли под председательством сенатора Эдварда Кеннеди (брата убитого президента). В результате в Мичиганском университете строительство лаборатории, спроектированной специально для биоинженерных работ, было задержано. Подобные же вопросы обсуждались в главной прокуратуре Нью-Йорка и на многих других совещаниях — в штатах Индиана, Коннектикут, Калифорния... Не только финансирующие исследования органы, но и совсем далекие от науки люди включались в обсуждение генно-инженерных проблем.

Когда жителям Кембриджа (город ученых в штате Массачусетс, США, здесь находятся знаменитые Гарвардский университет и Массачусетский технологический институт) стали известны планы Гарвардского университета построить для молекулярных биологов лабораторию, то решение этого вопроса было отдано мэром города Альфредом Велуччи на откуп комиссии горожан. В нее вошли: медсестра-монахиня (она заведовала больницей), инженер-строитель, владелец небольшой компании, снабжающей горожан топливом, обеспеченная домохозяйка, два врача, философ и еще несколько представителей общественности. Им-то и вменялось определить степень безопасности предполагаемых научных изысканий в строящейся лаборатории. «Эксперты» заседали в Кембриджской городской больнице: дважды в неделю эта разнородная группа собиралась, чтобы поговорить о ДНК. Члены комиссии держались с учеными (их также приглашали на заседания) на «ты». И это было как раз то, чего ученые так опасались. В результате этих переговоров (дело происходило летом 1976 года) запланированные учеными эксперименты были сначала отложены на семь месяцев, а в феврале 1977 года городской совет и вовсе принял постановление (первое постановление такого рода в США), устанавливающее ограничения на исследования ДНК на всей территории Кембриджа.

Риск и возможная опасность ГМО и их научная проверка

В определенном смысле любой сорт выступает в качестве важнейшего для человечества рентообразующего фактора, как бы «озвучивающего» в цене величину и качество урожая благодаря лучшему использованию преимуществ местных почвенно-климатических и погодных условий, соответствию требованиям, а нередко и «прихотям» рынка, отзывчивости на применение техногенных факторов, применению новейших достижений науки и пр. В то же время при рыночной системе ценообразования и существующих методиках сортоиспытания далеко не всегда «улавливаются» преимущества нового сорта или гибрида, связанные с обеспечением экологической безопасности, т.е. их пригодностью к природоохранным, в том числе беспестицидным, технологиям возделывания, способностью усваивать труднодоступные элементы питания, противостоять кислотности и засолению почвы, обогащать ее биологическим азотом, улучшать физико-химическое и фитосанитарное состояние и тд. То обстоятельство, что в условиях рыночной экономики цены на сельскохозяйственную продукцию практически не учитывают средоохранные, ресурсосберегающие, почвоулучшающие и многие другие важные в экологическом плане признаки и свойства новых сортов, следует рассматривать в качестве хотя и временного, но весьма негативного явления.

Далеко не всегда в цене «озвучивается» и содержание в урожае биологически ценных, в том числе незаменимых, веществ. Между тем проблемы здоровья, питания и ресурсов всегда взаимосвязаны, а качество пищи и лекарства справедливо считаются двумя сторонами одной и той же медали под названием здоровье. С учетом решающего значения сорта в определении показателей «качества пищи», а следовательно, и «качества жизни» людей рентообразующим свойствам сорта, связанным с содержанием биологически и технологически ценных веществ (углеводов, аминокислот, жиров, витаминов, минеральных солей и др.), вкусом, эстетичностью, безопасностью для здоровья (отсутствие нитритов и нитрозаминов, тяжелых металлов, радионуклидов, микотоксинов и пр.), в процессе селекции и возделывания растений необходимо уделять особое внимание. Так, энергетическая и протеиновая ценность кормовых культур и соответствующих сортов должна формироваться в строгом соответствии с технологиями их возделывания, транспортировки, хранения и переработки, а также условиями содержания животных, более того, даже с учетом особенностей производства той или иной животноводческой продукции.

Например, важную роль приобретает создание сортов клевера с высокой растворимостью протеина (разброс данного показателя по сортам — от 20 до 70%), что позволило бы приблизить эту культуру по питательной ценности к люцерне. Поэтому в селекционном процессе, так же как и при нормировании кормов, важно учитывать не только валовое содержание, но и все большее число составляющих их биологически ценных веществ, определяющих в конечном счете питательную ценность кормов по обменной энергии и перевариваемому протеину. В этой связи должны быть разработаны соответствующие коэффициенты биоконверсии не только для каждой кормовой культуры и сорта, вида животного и технологии его содержания, но и для определенного типа фитоценоза (лугового или полевого) и т.д.

Как уже отмечалось выше, одной из возможностей уменьшения загрязнения генотоксическими агентами окружающей среды в связи с химизацией сельского хозяйства является широкое использование ГМ растений. Но оно требует объективного анализа рисков распространения ГМО. При рассмотрении проблемы возможного влияния трансгенных растений на окружающую среду в основном обсуждаются 3 аспекта:

1. Сконструированные гены могут быть переданы с пыльцой близкородственным диким видам, и их гибридное потомство приобретет новые привнесенные свойства или способность конкурировать с другими растениями.