Znakomici eksperci orzekli — ku uldze spółek gazowniczych — że pomysły Edisona są „dobre dla naszych przyjaciół zza oceanu… niegodne jednak uwagi ludzi praktycznych, a tym bardziej uczonych”. A Sir William Preece, główny inżynier poczty brytyjskiej, wypowiedział się bez ogródek, iż „zastosowanie światła elektrycznego to wręcz ignis fatuus”. Wydaje się, że błądził w tym przypadku bynajmniej nie ignis.
Stawiany pod pręgierzem nonsens naukowy, niech mi będzie wolno to podkreślić, nie odnosi się do pierwotnego marzenia o perpetuum mobile, lecz do skromnej żarówki elektrycznej, którą już trzy pokolenia uważają za coś oczywistego, chyba że się przepali i zostawi ich w ciemności. Mimo iż w tej sprawie Edison sięgał wzrokiem znacznie dalej od swych współczesnych, w jakiś czas później i on dopuścił się podobnej krótkowzroczności jak Preece and Co, przeciwstawiając się wprowadzeniu prądu zmiennego.
Najbardziej znane i być może najbardziej pouczające przypadki braku odwagi wystąpiły w dziedzinie aero — oraz astronautyki. Na początku dwudziestego wieku uczeni niemal jednomyślnie twierdzili, że niemożliwy jest lot obiektu cięższego od powietrza i że każdy, kto próbuje budować aeroplany, jest głupcem. Wielki astronom amerykański Simon Newcomb napisał sławny esej, w którego zakończeniu stwierdza:
„Udowodnienie, że żadna możliwa kombinacja znanych substancji, znanych mechanizmów oraz znanych sił napędowych nie może być zespolona w konkretnej maszynie, która pozwoli ludziom pokonywać drogą powietrzną ogromne odległości, wydaje się autorowi tak proste, jak udowodnienie każdego innego faktu fizycznego”.
Rzecz zastanawiająca, Newcomb posiadał na tyle otwarty umysł, by nie wykluczyć, że nowe rewelacyjne odkrycie — miał tu na myśli neutralizację przyciągania ziemskiego — umożliwiłoby latanie. Dlatego też nie można oskarżać go o brak wyobraźni. Popełnił błąd, gdyż usiłował uporządkować fakty z dziedziny aerodynamiki, nie pojmując tej nauki. Brak odwagi polegał na tym, że nie zdawał sobie sprawy, iż wszystko potrzebne do zbudowania aparatu latającego znajduje się już w zasięgu ręki.
Artykuł Newcomba zyskał rozgłos akurat w czasie, gdy bracia Wright, nie posiadając w swym sklepie z rowerami odpowiedniego urządzenia antygrawitacyjnego, montowali silnik benzynowy na skrzydłach. Kiedy wiadomość o ich sukcesie dotarła do astronoma, oniemiał tylko na chwilę. Latające maszyny — przyznał — to możliwość marginalna nie mająca jednak znaczenia praktycznego, wykluczone bowiem, by mogły udźwignąć dodatkowy ciężar pasażera oraz pilota…
Takie odrzucanie faktów, dziś uważanych za oczywiste, ciągnęło się przez całą historię lotnictwa. Pozwolę sobie zacytować innego astronoma, Williama H. Pickeringa, który pogodził nie jednomyślną opinię publiczną w kilka lat po starcie pierwszych aeroplanów.
„Przeciętny człowiek często wyobraża sobie gigantyczne maszyny latające nad Atlantykiem i przewożące niezliczone ilości pasażerów na podobieństwo nowoczesnych parowców… Można chyba śmiało zaryzykować twierdzenie, że są to idee zgolą fantastyczne i nawet gdyby taka maszyna zdołała przeprawić się na drugą stronę oceanu z jednym lub dwoma pasażerami „na grzbiecie”, stać by na to było jedynie kapitalistów posiadających własne jachty. Innym częstym błędem jest zakładanie wielkiej szybkości. Trzeba pamiętać, że opór powietrza jest wprost proporcjonalny do kwadratu prędkości, a praca do sześcianu… Jeśli przy trzydziestu koniach mechanicznych możemy osiągnąć obecnie prędkość czterdziestu mil na godzinę, to, by uzyskać prędkość stu mil na godzinę, musimy użyć silnika o mocy czterystu siedemdziesięciu koni mechanicznych… bez wątpienia przy naszych obecnych środkach nie mamy szans na wygranie wyścigu szybkości z lokomotywami czy automobilami”.
Tak się złożyło, iż większość kolegów po fachu uważała Pickeringa za obdarzonego zbyt bujną wyobraźnią. Skłonny był widzieć życie — nawet dowody życia owadów — na Księżycu. Stwierdzam z satysfakcją, że zanim profesor Pickering, dożywszy sędziwego wieku osiemdziesięciu lat, zmarł w roku 1938, miał niejedną okazję oglądać samoloty latające z prędkością czterystu mil na godzinę i z obciążeniem znacznie większym niż „jeden lub dwóch” pasażerów. Era kosmiczna przyniosła na skalę oraz w tempie dotąd nie spotykanym masową rehabilitację jednych proroków oraz obalenie innych. Mając w tym jakiś swój udział i nie będąc bardziej od innych odporny na złośliwą przyjemność, jaka daje okrzyk: „A nie mówiłem!”, chciałbym przypomnieć kilka opinii wybitnych uczonych, wypowiedzianych w przeszłości na temat lotów kosmicznych. Ktoś musi odgrzebać wspomnienia o pesymistach. Skwapliwość, z jaką ci, którzy do niedawna twierdzili: „To jest wykluczone”, przestawiali się na: „Zawsze mówiłem, że to możliwe”, jest doprawdy zdumiewająca.
Co się tyczy szerszych kół społeczeństwa, to idea lotów kosmicznych po raz pierwszy pojawiła się na horyzoncie w latach dwudziestych jako rezultat sprawozdań prasowych z prac prowadzonych przez Amerykanina Roberta Goddarda oraz Niemca Hermanna Obertha (dużo wcześniejsze badania Ciołkowskiego w Rosji były wówczas prawie nie znane poza granicami jego własnego kraju). Kiedy koncepcje Goddarda i Obertha, jak zwykle okaleczone przez prasę, przeniknęły do świata naukowego, wygwizdano je i wyszydzono. Jako próbkę głosów krytycznych, które musieli ścierpieć pionierzy astronautyki, chciałbym zaprezentować ten oto majstersztyk — cytat z rozprawy opublikowanej przez profesora A. W. Bickertona w 1926 roku. Proszę czytać bardzo uważnie, ponieważ stanowi on przykład aroganckiej ignorancji i jest niezwykle trudny do zbicia.
„Idiotyczny pomysł wystrzelenia rakiety na Księżyc jest dowodem, do jakiego absurdu może doprowadzić naukowców wynaturzona specjalizacja. Spójrzmy na ten projekt krytycznie. Pocisk, by przezwyciężyć przyciąganie ziemskie, musi osiągnąć prędkość siedmiu mil na sekundę. Energia cieplna wytwarzana przy tej prędkości przez jeden gram materiału wybuchowego wynosi piętnaście tysięcy sto osiemdziesiąt kalorii… Energia grama najsilniejszego materiału wybuchowego — nitrogliceryny — wynosi niespełna tysiąc pięćset kalorii. Zatem gdyby nawet siła eksplozji nie musiała niczego unieść, posiadałaby zaledwie jedną dziesiątą energii niezbędnej do oderwania się od Ziemi… Dlatego też przedsięwzięcie wydaje się z gruntu niemożliwe…”
Oburzeni czytelnicy w kolumbijskiej czytelni publicznej wskazywali mi ze złością napis CISZA, w chwili gdy odkryłem tę małą perełkę. Warto zająć się tym szczegółowo, by zobaczyć, jak „wynaturzona specjalizacja” — jeśli wolno ukuć taki zwrot — sprowadziła profesora na manowce.
Pierwszy jego błąd tkwi w zdaniu: „Energia najsilniejszego materiału wybuchowego — nitrogliceryny…” Można by sądzić, że to energia, nie siła, jest tym, czego wymagamy od paliwa rakietowego. W istocie rzeczy nitrogliceryna i zbliżone do niej materiały wybuchowe zawierają znacznie mniej energii na jednostkę ciężaru niż takie mieszanki, jak na przykład nafta z ciekłym tlenem. Zwrócili na to uwagę już wiele lat wcześniej Ciołkowski i Goddard.
Drugi błąd Bickertona jest bardziej karygodny. Mówiąc bez ogródek — wypływa po prostu z głupoty. Cóż z tego, że nitrogliceryna posiada tylko jedną dziesiątą energii koniecznej do oderwania się od Ziemi? Oznacza to po prostu, że trzeba zużyć przynajmniej dziesięć funtów nitrogliceryny, aby wystrzelić jeden funt ładunku użytecznego 1.
A przecież samo paliwo nie musi odrywać się od Ziemi. Może być spalone tuż przy niej, byle tylko przekazało swą energię ładunkowi użytecznemu — na tym kończy się jego rola. Kiedy w trzydzieści trzy lata później wbrew twierdzeniu profesora Bickertona, iż jest to niemożliwe, wystartował Łunnik II, większa część jego materiału napędowego nie oddaliła się zbytnio od ziemi rosyjskiej… ale za to pół tony ładunku użytecznego dosięgło Marę Imbrium.