Выбрать главу

Одна из таких загадок восходит к Кирхгофу. Объяснение природы фраунгоферовых линий привело Кирхгофа к формулировке общего закона, суть которого проста, как просты и другие великие законы природы: способность вещества излучать пропорциональна его способности поглощать и зависит от температуры. Термодинамика, достигшая к тому времени больших успехов, позволяла утверждать, что все тела, находящиеся внутри замкнутой оболочки, должны прийти к тепловому равновесию — достичь одинаковой температуры. При этом не важны ни размеры, ни форма тел или самой оболочки, ни вещество, из которого они состоят. Не требуется и соприкосновения между ними. Равновесие будет обеспечено испускаемым и поглощаемым ими излучением.

Что, если в оболочке, в которой уже установилось тепловое равновесие, проделать небольшое отверстие? Это один из тех простых вопросов, на которые не существует простых ответов. Но если оболочка находится внутри другой замкнутой оболочки, положение упрощается. Между ними начинается обмен энергией, и постепенно их температура выравнивается. В ходе этого обмена через отверстие меньшей оболочки будет проходить излучение, переносящее избыток энергии от более нагретой части к менее нагретой. Если внешняя оболочка горячее, то поток энергии направлен из нее во внутреннюю полость меньшей оболочки, которая поглощает все излучение, как абсолютно черное тело.

Так Кирхгоф пришел к понятию «абсолютно черного тела» и построил его модель в виде камеры с очень малым отверстием. Энергия, выходящая из такого отверстия наружу, определяется только температурой «абсолютно черного тела» и не зависит от вещества, из которого она сделана. Если раскалить модель до высокой температуры, отверстие будет сиять ослепительным белым светом. Это не игра слов, а прямое следствие закона Кирхгофа. Раскаленное «черное тело» должно приходить в равновесие с окружающими его более холодными телами, для этого оно должно путем излучения передавать внешним телам свою избыточную энергию. Если оно очень нагрето, то излучение должно быть весьма ярким.

Удивительные свойства «абсолютно черного тела» привлекли к нему внимание множества исследователей. Обобщив результаты других ученых и свои собственные, венский физик Стефан показал, что энергия, излученная «черным телом», пропорциональна четвертой степени его абсолютной температуры. А это температура, отсчитанная не по шкале Цельсия, а по шкале Кельвина, нуль которой соответствует не температуре таяния льда, а той недостижимо низкой температуре, при которой (по мнению Кельвина) прекращается всякое тепловое движение. Вскоре соотечественник Стефана, один из величайших физиков прошлого века, Больцман, чисто теоретически доказал, что закон Стефана может быть получен без специальных экспериментов, как простое следствие законов термодинамики.

Закон Стефана — Больцмана, как его теперь называют, оказался верным во всем доступном нам диапазоне температур. Он считался одним из величайших достижений физики, хотя... было не очень понятно, какую роль здесь играет переносчик излучения — эфир.

Прошло еще десять лет, и глубокий аналитик Вин довел до конца попытки русского физика В.А. Михельсона определить распределение энергии в спектре «абсолютно черного тела». Исходя лишь из мысленных экспериментов и развивая идеи Больцмана, Вин доказал, что второй закон термодинамики требует, чтобы спектральная интенсивность излучения «черного тела» выражалась некоторой неизвестной ему функцией от произведения длины волны света на температуру «черного тела», причем множителем перед этой функцией должна быть пятая степень его температуры.

То, чего требует второй закон термодинамики, было свято для физиков прошлого века и пребудет истинным во все века. Людям остается лишь пытаться понять, почему так происходит. Из закона, полученного Вином с помощью простых математических операций, получается еще один закон. Вин назвал его законом смещения максимум кривой, изображающей спектр излучения «черного тела», смещается в зависимости от температуру тела. Смещается так, что остается постоянным произведение абсолютной температуры «черного тела» на длину волны, соответствующей максимуму излучения. И этот закон, полученный лишь на основе законов термодинамики, соблюдается во всех известных нам случаях. Он позволяет определять температуру тел без всяких термометров, лишь с помощью спектроскопа. Так удалось решить, казалось, неразрешимую задачу определения температуры Солнца и звезд.

Вин попытался сделать еще один шаг — определить математический вид функции, входящей в закон излучения «абсолютно черного тела». Полученная им формула требовала, чтобы интенсивность излучения на каждой длине волны стремилась к пределу при повышении температуры. Опыт опроверг такой вывод. Формула Вина совпадала с экспериментом лишь при малых длинах волн и низких температурах. При высоких температурах и больших длинах волн она резко противоречила опыту.